
16

Bulgarian Academy of Sciences. Space Research and Technology Institute.

Aerospace Research in Bulgaria. 37, 2025, Sofia

APPLYING PARALLEL SITUATIONAL ANALYSIS SOLVER

TO SATELLITE – SPACE DEBRIS CLOSE APPROACH PROBLEMS.

ALGORITHMS AND SUBROUTINES

Atanas Atanassov

Space Research and Technology Institute – Bulgarian Academy of Sciences

e-mail: At_M_Atanassov@yahoo.com

Keywords: Space mission analysis and design, Situational analysis, Constraints analysis,

Close approach, Conjunction analysis

Abstract
As the number of active and passive satellites orbiting the Earth continues to increase, the

likelihood of a direct collision with either another satellite or space debris also increases. Any

analysis of the functionality of space systems over time must take into account the possibility of such

events and the manoeuvres undertaken to mitigate the risk of a direct collision. This article considers

the possibility of using the developed solver for situational analysis to solve close-approach problems

between multi-satellite systems and space debris. This solver is one of several computing tools at the

core of a multiphysics environment used for space mission simulations. The focus of the article is on

the calculation models, algorithms, and subroutines used to develop the situational condition for

"close approach" seeking.

1. Introduction

Satellite technology is developing in two main directions: the use of

smaller satellites and the implementation of multi-satellite missions using smaller

satellites instead of large multi-purpose ones [1, 2]. The process of space mission

analysis and design involves clarifying and optimising many parameters linked to

scientific instruments, satellite subsystems, orbital parameters, or templates of

multi-satellite systems.

Computer simulations are playing an increasing role at all stages of

preparation and operational implementation of multi-satellite missions. The

development of various computational models, algorithms, and software tools is

important for solving multidimensional problems related to the analysis and design

of space missions, as well as for mastering the growing possibilities of the invasion

of computing technologies. The application of parallel algorithms and calculations

is crucial in solving large-scale problems that involve hundreds and thousands of

satellites [3].

mailto:At_M_Atanassov@yahoo.com

17

An important part of the space missions’ analysis is the so-called

situational analysis. The situational analysis deals with the determination of

optimal time intervals suitable for the execution of satellite operations, depending

on various geometric and physical conditions. This type of analysis is applied to

different stages of mission preparation - starting with the conceptual study and

preliminary analysis, going through mission definition, design, and development,

and finishing with implementation. The close encounters between active satellites,

active satellites and debris, and between debris give rise to a distinct subfield of

space research that focuses on scientific problems arising from such interactions.

Models and algorithms are being developed to analyse long-term and short-term

changes in the space debris population [4, 5]. Various ideas are also being

developed to mitigate the problems associated with the growing number of space

debris [6].

The development and research of "close approach" algorithms are driven

by various reasons, with the main aim being to reduce the risk of collisions

between active satellites and other objects, such as passive satellites, parts of failed

satellites, natural debris, or other objects. "Close encounters" are also considered in

technology development to reduce the number of inactive space objects. The huge

and growing number of objects presents computational problems that require

solutions related to the development of parallel algorithms and the use of

appropriate program models for implementation. It is also important to address the

problems related to destroying mechanisms in direct collisions between satellites

and other objects [7, 8].

The "close approach" problem can be parameterized by defining acceptable

values for the dangerous distance between objects, time intervals for passing

through the "dangerous zone", and the moment of maximum approach.

This allows the problem to be viewed as situational. This provokes us to

consider the potential of applying the developed Parallel Situational Analysis

Solver (PSAS) [9] to tackle such types of problems. This solver was developed at

the Space Research and Technology Institute at the Bulgarian Academy of

Sciences. Algorithms and some subroutines are presented in the present work.

2. Concept of situation analysis

The purpose of situational analysis is to assess the feasibility of satellite

operations considering specific constraints. Each situational problem (𝑆𝑃) is

composed of one or a conjunction of several situational conditions 𝑠𝑐𝑖 of various

types:

𝑆𝑃 = 𝑠𝑐1 ∧ 𝑠𝑐2 ∧ … ∧ 𝑠𝑐𝑛
The problem of close approach between objects in space involves

determining the time interval when the objects are at a distance 𝐷(𝑡) less than a

18

certain threshold magnitude 𝐷𝑡ℎ𝑟 and the moment 𝑡𝑐𝑙𝑜𝑠𝑒 when this distance is

minimal:

𝐷(𝑡) = √(𝑥(𝑡)
𝑠 − 𝑥(𝑡)

𝑑)2 + (𝑦(𝑡)
𝑠 − 𝑦(𝑡)

𝑑)2 + (𝑧(𝑡)
𝑠 − 𝑧(𝑡)

𝑑)2 < 𝐷𝑡ℎ𝑟

In the last formula, indices s and d refer to satellites and debris, respectively. The

risk of collision at such a short distance is considered too likely. In this case, a

specified minimum threshold of the distance between two objects, below which

there is a danger of collision, is taken as a limiting condition. Taking into account

the speeds with which objects move in space around the Earth, the time to pass

through such a ”dangerous zone“ to a possible collision will be short. Different

authors consider values of such a threshold from tens to hundreds to tens of

kilometres [10, 11]. Kubasov proposes an algorithm for preventing collisions

between satellites [10].

In addition to calculating the minimum distance between the two objects,

the relative velocity 𝑣(𝑡)𝑠,𝑑
𝑟𝑒𝑙 and the angle 𝜃𝑖 between the two vectors �⃗�

𝑠 and �⃗�
𝑑 is

also relevant at the time of close approach.

3. Parallel solving of ”close approach“ situational problems

In the case of solving problems of the "close approach" type, it is necessary

to solve a large number of situational problems due to the increasing number of

active and passive objects, especially in low Earth orbits. Applying the “perigee-

apogee” filter [6] that checks possible conjunctions depending on the geometry of

the objects' orbits (at some fixed time interval) eliminates the need to apply all-to-

all computation procedures to an actual number of objects [12]. However, the

reduced number only alleviates the problem without making it negligible.

A feature of the mathematical model for checking "close approaches"

between objects results in a variable amount of calculations on different sections of

their orbits (section 6). Such a model is the source of the so-called "irregular

calculations" and an imbalance occurs when the calculations are parallelized [13].

This is due to the uneven distribution of computational operations between the

available processors. In case of poor distribution, some processors complete their

problems and are free, while others continue their calculations. The “Pool of

threads” model copes with this problem. PSAS was developed to solve a variety of

types and a large number of situational problems [9]. It is a processing program

that consistently checks the feasibility of the conditions in a particular situational

problem. The parallelization is based on computational threads organized in a

variant [14] of the program model "pool of threads".

4. Situational problems editor

The situational editor, representing a dialogue form with various controls,

has been developed for composing situational problems. Before creating situational

19

tasks, it is necessary to develop basic objects such as space missions and

populations of space debris. First, a space mission is selected among those

displayed in the list box control. Depending on the type of the multi-satellite

system, they are selected from among possible (contextually determined)

situational conditions and displayed in another list box control. The remaining

objects are displayed in another window. One of them can be specified for the

composition of situational problems between two multidimensional objects (a close

approach between satellites and space debris, for example). Situational problems

between satellites from different multi-satellite missions within a federation are

possible.

Information necessary for compiling situational tasks is taken from the

descriptors of the selected objects. Some of this information relates to the

dimensionality of the objects (number of satellites and number of space debris).

The values of addresses in the memory where the state vectors of the objects are

located are also copied from their descriptors. After entering the necessary

parameters and compiling situational tasks, an actual situational solver is created to

solve the situational problems.

5. A situational problem description model

A descriptor of situational problems is a one-dimensional array whose

elements are derived types containing the values of different attributes (parameters

and constraints as well as results) of the conditions comprised in the problem. The

first (zero) element of the descriptor contains control information and results about

the entire situational problem. The following elements contain the values of

different attributes (parameters and constraints as well as results) of the conditions

in the situational problem.

Figure 1 illustrates an approach for creating situational problem descriptor

objects with the means of the Fortran language. The descriptors of different

situational problems are combined into a two-dimensional array with dimensions

K × N, where N is the number of problems and K is the maximum number of

situational conditions among all problems.

The UNION statement defines groups of parameters that share memory

among different situational conditions. The UNION operator specifies an area of

memory used polymorphically by each function computing different situational

conditions. The two parameters num_sat_61 and id_debris are located in the same

memory location but are used when passing the situation condition model to two

different subroutines, respectively, for checking proximity between objects from

the same mission or between a satellite and space debris. The close_param array

contains results from the situational analysis (Fig. 1). These results can be used in

simulations at subsequent levels of the simulation model.

20

 Fig. 1 Derived types for situational problems compilation

The sit_problem is a derived type that describes different situational

problems [9]. The UNION statement defines groups of two MAP blocks that

describe the elements of one situational problem. The first MAP block describes

the zero element of the situational problem descriptor, which contains control

parameters and the problem's attributes. The second MAP block allows the

inheritance of the properties of each situational condition in the situational

problem. The PSAS interprets situational condition attributes according to the

identification code sit_code (in zero element of the situational problem). Each

MODULE

 type SitCond

! general parameters [cyting]

 …

 union
 map … ! Other situational conditions
 end map ! Other situational conditions

 map ! Sit_61/

 union

 map

 integer id_debris ! satellite - space debris & satellite – other mission satellite

 end map
 map

 integer num_sat_61 ! satellite - satellite

 end map

 end union

 real distance ! threshold distance

 real*8 close_param(7) ! (1),(4)- times of entering/exiting the “dangerous zone”
 ! (2)- moment of maximal approach

 ! (3)- the magnitude of the closest distance

 ! (5)- the current distance between the two objects
 ! (6)- an angle between the objects' velocities vectors

 ! (7)- magnitude of the relative velocity

 real angle_v1v2
 real relative_velosity

 end map

 map …

 end map ! For other situational conditions

 end union
 end type SitCond

 type sit_problem

 union

 map ! Only for solving control- contains the number of situation conditions

! general parameters [cyting]

 …

 end map

 map

 type (SitCond) sit_cond

 end map

 end union

 end type sit_ problem

END MODULE

21

function corresponding to a given situational condition interprets the attributes in a

specific way (kind of polymorphism) depending on a corresponding MAP block.

6. Interpolation of the state vectors

Note that it is impossible to solve a problem of "close approach" between

two objects based on state vectors determined by numerical integration with a time

step ∆𝑡 in the order of tens of seconds. This is because at velocities of the order of

several kilometres per second at which space objects travel (depending on the

altitudes at the points on the orbit), the distances travelled per integration step can

be of the order of hundreds of kilometres. Thus, exact values for the moment of

minimum distance and moments of entry and exit from the "dangerous zone"

cannot be calculated. It is necessary to use interpolation to find the coordinates of

the bodies at any time within the step. The Lagrangian method [15] is used in the

present work. The coordinates and velocities of the objects are calculated with a

constant time step by applying the Parallel Integrator of systems of differential

equations for space objects motion integration [14]. To apply an interpolation

method, the state vectors' last few values must be available. At the stage of creating

the model of a satellite mission (or other main object, for example, space debris),

the following structure is created:

The attributes of this structure are assigned values when the space mission

model is created, and its address is written to the mission descriptor. Access to this

descriptor is provided when creating situational task models. The address of the

mentioned structure, along with the addresses of the state vectors of the objects, the

Lagrange coefficients, and the number of interpolation nodes, is taken from this

descriptor and passed to the situation solver for solving situational problems. This

is done at the creation stage of the mission model after the thread pool is created.

7. Algorithm and subroutine for checking for situational condition

The "dangerous zone" search algorithm is based on analyzing the distance

function between objects 𝐷(𝑡). This function is unimodal over a fairly wide time

interval. Therefore, within one integration step ∆𝑡, the behaviour of the derivative

of the distance function at both ends of the step (𝐷′(𝑡) and 𝐷′(𝑡 + 𝑑𝑡)) allows to

establish the presence of a minimum. At the heart of the algorithm is the

construction a1: IF-THEN-ELSE IF-END IF a1 (Appendix A). If the derivative at

type Nodes_Lagrange

 integer nodes,count_nodes

 integer denominator_nodes_adr

 integer t_nodes_adr,

 integer xv_nodes_adr

end type Nodes_Lagrange

22

both ends of the step dt is negative, the distance decreases. The condition

(derivative_1.LT..0D0 .AND. derivative_2.LT..0D0) is checked. In this case, the

threshold of dangerous convergence between the two objects is checked. This

requires that the threshold value be intermediate to the distance values at either end

of the time step. For this purpose, the construction b1: IF-THEN-ELSE IF-END IF

b1 is used. The (Dist_n .GT. distance .AND. Dist_k .GT. distance) condition check

applies outside the “dangerous zone” whose dimensions are determined by the

value of the parameter distance. Similarly, the condition (Dist_n .LT. distance

.AND. Dist_k .LT. distance) checks for falling "inside" the “dangerous zone”.

When the condition (Dist_n .GT. distance .AND. Dist_k .LT. distance) is fulfilled,

the moment of entry of the satellite t_dist into the “dangerous zone” is determined.

This is done with the Find_threshold() subroutine (Appendix A).

Analogously, with the condition (derivative_1.GT..0D0 .AND.

derivative_2.GT..0D0), an increase in the distance between the two objects is

checked. In this case, the construct b1: IF-THEN-ELSE IF-END IF b1 aims to

detect the end of the “dangerous zone” and to determine again with the subroutine

Find_treshold() the moment of exit from it. This subroutine is the result of a

combination of two separate subroutines for determining the times of entry or exit

from the “dangerous zone”. Allowed values of the first actual parameter var are 1

or 2, for the beginning and exit times, respectively.

The condition (derivative_1.GE..0D0 .AND. derivative_2.LE..0D0)

corresponds to reaching a local maximum of the function 𝐷(𝑡) and is only for

completeness, in fact, its check can be removed. The last condition

(derivative_1.LE..0D0.AND.derivative_2.GE..0D0) refers to finding a local

minimum of the function 𝐷(𝑡) contained within the current step. This is

accomplished with the Zero_deriv() subroutine, which looks for the instant in time

for which the derivative 𝐷′(𝑡) has a zero value.

It is possible to pass through the danger zone in a single integration time

step, depending on the relative velocities of the objects and the step size ∆𝑡. For

this purpose, after determining the values of the minimum distance and the moment

when it is reached, it is also checked for the moments of entry and exit from the

“dangerous zone”. It is possible for one or both of the moments to fall within the

time frame of the current step ∆𝑡.

8. Auxilary subroutines

A subroutine that calculates the distance between two objects

The subroutine Lagrange_interp calculates the value of the function 𝐷(𝑡)

at any time 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘], where k is the serial number of the node in the Lagrange

interpolation. Partially pre-calculated Lagrange coefficients are used. With

additional calculations using the coordinates of the objects in the last few moments,

23

the final coefficients are calculated. After determining the coordinates of the

objects at the desired moment, the distance between them is calculated.

Subroutine to determine the derivative of the function D(t)

The subroutine First_deriv determines the derivative 𝐷′(𝑡) of the distance

function. This is done by determining the values of the distance function at two

close points in time 𝐷(𝑡) and 𝐷(𝑡 − ∆𝑡). Finally, the value of the derivative

𝐷′(𝑡) = (𝐷(𝑡) − 𝐷(𝑡 − ∆𝑡))/∆𝑡.

Subroutine for finding the boundaries of the “dangerous zone”

The subroutine Find_threshold determines the boundaries of the

“dangerous zone” at intermediate times 𝑡𝑏𝑒𝑔/𝑒𝑛𝑑 ∈ [𝑡𝑘−1, 𝑡𝑘]. It combines two

separate subroutines, depending on the var parameter, determining the moments

when the objects are at the beginning or the end of the close approach area.

The search is done with an iterative method, halving each subsequent

interval and checking the distance value (defined by the program) if it is greater or

less than the set limit value. Depending on the results of the checks, the limits of

the interval change. The process is always convergent.

Subroutine for finding minimum distance

The subroutine searches for the minimum of the function 𝐷(𝑡) in the

interval for which the derivative is negative at the beginning and positive at the

end. The function 𝐷(𝑡) is unimodal and has a single minimum within the

considered interval. Again, the bisection method is applied, using the First_deriv

subroutine to determine the derivative in the middle of the interval and check its

value. Depending on the sign of the derivative at the midpoint, one of the

boundaries of the considered interval changes. Thus, the interval is shortened with

each iteration. The process is convergent and terminates when a value for the

derivative has reached some small limiting value.

We should note that an interface to connect objects from different missions

was developed to solve inter-mission situational problems [16]. In addition to

solving situational tasks, this approach is also applicable in other cases when

information from different missions is necessary.

9. Examples of applying the presented approach and subroutines

Seven orbits have been selected for testing the approach and subroutines

that determine the moments of passing through the "dangerous zone". They have

equal semi-major axes 𝑎𝑛 = 7,200 km, eccentricities 𝑒𝑛 = .001, and perigee

arguments 𝜔𝑛 = .0 deg. Different values of inclinations 𝑖𝑛 and ascending nodes Ω𝑛,

given in Table 1, are selected to ensure an approach between the objects.

24

 Table 1. Parameters of the orbits used in the numerical experiments

Orbits 1 2 3 4 5 6 7

Inclination [deg] .0 1.0 90.0 180.0 90.0 45.0 135.0

Ascending node [deg] 0.0 0.0 0.0 0.0 90.0 0.0 90.0

Within the performed experiments, the integration of the equations of

motion was performed with different time steps. The test results at an integration

step Δ𝑡 = 10 s are presented in Table 2. The accuracy of the calculated times

depends only on the integration accuracy!

Table 2. Calculation results based on the orbits from Table 1

Pairs of

orbits

Minimum

distance [m]

Entering the

“dangerous zone”

[s]

Moment of

minimum distance

[s]

Exiting the

“dangerous zone

[s]

Relative

velocity [m/s]

1-2 .00050 2963.04955 3040.21874 3117.38792 129.72

1-3 .04050 3039.26739 3040.21874 3041.17010 10511.158

1-4 .05727 3039.54603 3040.21874 3040.89145 14865.022

3-5 I .02433 1517.15041 1518.10078 1519.05115 10522.077

3-5 II .03643 4561.38629 4562.33665 4563.28702 10522.078

6-7 I .06134 922.07540 922.85091 923.62641 12894.581

6-7 II .02911 3965.57317 3966.34961 3967.12604 12879.140

When the orbital planes make a small angle (the pair of objects 1-2) the

“dangerous zone” is relatively extended in time. At large angles, however, passing

through the “dangerous zone” occurs in shorter time intervals.

10. Conclusion and outlook

An algorithm and subroutines for checking a situational condition to search

for a close approach between two orbital objects are presented in this article. These

subroutines are designed to function within the framework of the situation solver

being developed. This class of situational tasks can be linked with others, such as

the destruction of space debris and the destruction of whole satellites, subsystems,

or individual devices. Furthermore, the time functionality of satellites within

individual missions (or within federations) can be explored to perform the targeted

tasks.

Appendix A. Source code of the subroutines checking the situational conditions

!**
! <Sit___61>- Close approach between "satellite-satellite"

!

! node_t(node,1)= t
! object1_nodes - coordinates of the first satellite

25

! object2_nodes - coordinates of the second satellite

! <First_deriv> - calculates the derivative at the moment t

! <First_treshold> - determines the first moment t when the distance is equal to <distance>
! <Flag_1> - <First_treshold> was passed

! <Seconf_treshold>- determines the last moment t when the distance is equal to <distance>

! <Flag_2> - <Seconf_treshold> was passed
! <close_param> - 7 elements array;

! close_param(1) - passing moments for <First_treshold>

! close_param(2) - passing moments for <Dist_close>
! close_param(3) - magnitude of <Dist_close>

! close_param(4) - passing moments for <Second_treshold>

! close_param(5) - the current distance between the two objects
! close_param(6) - an angle between the objects' velocities vectors

! close_param(7) - magnitude of the relative velocity

!...*

FUNCTION Sit___61(t,dt,object1_adr,object2_adr,nodes,nodes_count,node_t_adr,adr_znam_nodes, &

 distance,close_param,angle_v1v2, fl_rezults,duration,begin_sit,dt_sit,t12,id_debris)

 logical Sit___61, fl_rezults, begin_sit
 integer object1_adr,object2_adr, adr_znam_nodes

 real distance,angle_v1v2,duration, t12*8(2,3)

 real*8 t,dt, tt,close_param(5)
 real*8 object1_nodes(6,nodes),object2_nodes(6,nodes),node_t(nodes),node_znam(nodes)

 logical flag,flag_1[save],flag_2[save]

 real*8 derivative_1,derivative_2,Dist,t_dist,Dist_n,Dist_k,t_close,dist_close
 real*8 v1v2_delta,delta_v1v2

!_____________________________________

 AUTOMATIC flag,flag_1,flag_2,Dist_n,Dist_k,derivative_1,derivative_2,Dist_close,t_dist
 POINTER(node_t_adr,node_t); POINTER(adr_znam_nodes,node_znam)

 POINTER(object1_adr,object1_nodes); POINTER(object2_adr,object2_nodes)

 IF(nodes_count.LT.nodes) THEN

 Sit___61=.false.; RETURN

 ENDIF

 t= node_t(nodes - 1);

 Dist_n=.0D0; Dist_k=.0D0
 DO i=1,3

 Dist_n= DIST_n + (object1_nodes(i,nodes-1) - object2_nodes(i,nodes-1))**2

 Dist_k= DIST_k + (object1_nodes(i,nodes) - object2_nodes(i,nodes))**2
 END DO; Dist_n= SQRT(Dist_n); Dist_k= SQRT(Dist_k); close_param(5)= Dist_k

 derivative_1= First_deriv (node_t(nodes-1),nodes,node_t,object1_nodes,object2_nodes,node_znam)

 derivative_2= First_deriv (node_t(nodes),nodes,node_t,object1_nodes,object2_nodes,node_znam)

a1: IF(derivative_1.LT..0D0.AND.derivative_2.LT..0D0) THEN ! Decreasing distance
 flag_2=.false.

 b1: IF(Dist_n .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold

 ELSEIF(Dist_n .LT. distance .AND. Dist_k .LT. distance) THEN ! The threshold is passed
 ELSEIF(Dist_n .GT. distance .AND. Dist_k .LT. distance) THEN ! Passing the threshold

 flag_1= Find_treshold(1, node_t,distance, t_dist, Dist_n,Dist_k,nodes,node_znam, &

 object1_nodes,object2_nodes)
 close_param(1)= t_dist; flag_2=.true.

 ENDIF b1

 ELSEIF(derivative_1.GT..0D0.AND.derivative_2.GT..0D0) THEN ! Increasing distance
 flag_1=.false.

 b2: IF(Dist_n .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold

 ELSEIF(Dist_n .LT. distance .AND. DIst_k .LT. distance) THEN ! The threshold is not passed yet

 ELSEIF(Dist_n .LT. distance .AND. Dist_k .GT. distance) THEN ! Ima prag

 flag_2= Second_treshold(node_t,distance,t_dist,Dist_n,Dist_k,nodes,node_znam, &

26

 object1_nodes,object2_nodes)

 close_param(4)= t_dist; flag_2=.true.

 ENDIF b2

 ELSEIF(derivative_1.GE..0D0.AND.derivative_2.LE..0D0) THEN ! Local maximum

 ELSEIF(derivative_1.LE..0D0.AND.derivative_2.GE..0D0) THEN ! Local minimum

 Dist_close= Zero_deriv(node_t,nodes,t_close,object1_nodes,object2_nodes,node_znam);
 close_param(2)= t_close

 close_param(3)= Dist_close; close_param(5)= Dist_close

 delta_v1v2= Velosity_interp(t_close,nodes,node_t,object1_nodes,object2_nodes,node_znam);

 b3: IF(Dist_n.GT.distance.AND.Dist_close.LT.distance) THEN ! If the first threshold isn’t passed
 flag_1= First_treshol (node_t(nodes-1),t_close,node_t,distance,t_dist,Dist_n,Dist_k,nodes, &

 node_znam,object1_nodes, object2_nodes)

 close_param(1)= t_dist; flag_1=.true.

 ENDIF b3

 b4: IF(Dist_close.LT.distance.AND.Dist_k.GT.distance) THEN ! Ima prag v ostavashtata chast na stapkata
 flag_2= Second_treshol (t_close,node_t(nodes),node_t,distance,t_dist,Dist_n,Dist_k,nodes, &

 node_znam,object1_nodes,object2_nodes)

 close_param(4)= t_dist; flag_2=.true.

 ENDIF b4

 ENDIF а1;

 Sit___61=.true.
END FUNCTION Sit___61

!***
! <First_deriv>- determines the first derivative in the moment <t>

!..*

FUNCTION First_deriv(t,nodes,node_t, node_1, node_2, node_znam)
 real*8 First_deriv

 real*8 t,node_t(nodes), node_1(6,nodes),node_2(6,nodes),node_znam(nodes)

 real*8 dt/.00001/, Dist1, Dist0, Lagrange_interp
 AUTOMATIC Dist1,Dist0

 Dist1= Lagrange_interp (t ,nodes, node_t,node_1,node_2,node_znam)
 Dist0= Lagrange_interp (t-dt,nodes, node_t,node_1,node_2,node_znam);

 First_deriv= (Dist1 - Dist0)/dt
END FUNCTION First_deriv

!***

! First derivative - zero; minimum distance

!___
FUNCTION Zero_deriv(node_t,nodes, t_close, node_1, node_2, node_znam)

 real*8 Zero_deriv

 real*8 node_t(nodes),t_close, node_1(6,nodes),node_2(6,nodes),node_znam(nodes)
 real*8 First_deriv, Lagrange_interp, t_1,t_2,tm, Dist_close

 AUTOMATIC t_1,t_2,tm,Dist_close

 t_1= node_t(nodes-1); t_2= node_t(nodes); tm= t_1 + .5*(t_2 - t_1)
 derivative= First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);

 DO WHILE(ABS(derivative).GT..00001.AND.(t_2-t_1).GE..00001);

 IF(derivative.GT..0D0) THEN
 t_2= tm

 ELSEIF(derivative.LT..0D0) THEN

 t_1= tm

 ENDIF; tm= t_1 + .5*(t_2 - t_1)

27

 derivative= First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);

 END DO;

 Dist_close= Lagrange_interp (tm,nodes, node_t,node_1,node_2,node_znam);
 Zero_deriv= Dist_close; t_close= tm

END FUNCTION Zero_deriv

!***
! <Find_treshold>- finds the start and end times of the “dangerous zone”

! <var>- var=1 - finds the first threshold

! var=2 - finds the second threshold
!___

FUNCTION Find_treshold(var,tn,tk,node_t,distance,ts,Dist_n,Dist_k,nodes,node_znam, node_1, node_2)

 logical Find_treshold
 integer var

 real distance

 real*8 tn,tk,node_t(nodes), ts,Dist_n,Dist_k, node_znam(1),node_1(1),node_2(1)
 real*8 Disr_n,Disr_k,Dist_t,tt,t1,t2,Lagrange_interp,delta

 real*8,parameter :: tol=.01

 AUTOMATIC Disr_n,Disr_k,Dist_t,t1,t2,tt

 t1= tn; t2= tk; Disr_n= Dist_n; Disr_k= Dist_k; Find_treshold=.false.;!var_12= 2

 tt= t1 + .5*(t2 - t1)
 IF(var.EQ.1) THEN; delta= Disr_n - Disr_k

 ELSE; delta= Disr_k - Disr_n

 ENDIF

a: DO WHILE(delta.GT.tol)

 Dist_t= Lagrange_interp(tt,nodes,node_t,node_1,node_2,node_znam)

 IF(Dist_t.GT.distance) THEN
 IF(var.EQ.1) THEN; Disr_n= Dist_t; t1= tt

 ELSE; Disr_k= Dist_t; t2= tt

 ENDIF

 ELSEIF(Dist_t.LЕ.distance) THEN

 IF(var.EQ.1) THEN; Disr_k= Dist_t; t2= tt

 ELSE; Disr_n= Dist_t; t1= tt

 ENDIF

 ENDIF;

 ts= tt; tt= t1 + .5*(t2 - t1)
 IF(var.EQ.1) THEN; delta= Disr_n - Disr_k

 ELSE; delta= Disr_k - Disr_n

 ENDIF

 END DO a;

 Find_treshold=.true.

END FUNCTION Find_treshold

!**

! <Lagrange_interp>- determines the minimal distance between two objects in a time moment <t>
! Lagrange interpolation is applied

!__

FUNCTION Lagrange_interp(t,nodes,node_t, node_s, node_d, node_znam)
 real*8 Lagrange_interp

 real*8 t, node_t(nodes),node_s(6,nodes),node_d(6,nodes),node_znam(nodes)

 real*8 rt, numerator, Sx, Sy, Sz, Dx, Dy, Dz, coeff_Lagrange
 AUTOMATIC numerator, Sx, Sy, Sz, Dx, Dy, Dz, coeff_Lagrange

 Sx= 0.D0; Sy= 0.D0; Sz= 0.D0; Dx= 0.D0; Dy= 0.D0; Dz= 0.D0; rt= t;
 DO nd=1,nodes

 numerator = 1.D0;

 DO md=1,nodes

 IF(md.NE.nd) THEN

28

 numerator = numerator *(rt - node_t(md))

 ENDIF

 END DO;
 coeff_Lagrange= numerator *node_znam(nd);

 Sx= Sx + node_s(1,nd)*coeff_Lagrange; Dx= Dx + node_d(1,nd)*coeff_Lagrange

 Sy= Sy + node_s(2,nd)*coeff_Lagrange; Dy= Dy + node_d(2,nd)*coeff_Lagrange
 Sz= Sz + node_s(3,nd)*coeff_Lagrange; Dz= Dz + node_d(3,nd)*coeff_Lagrange

 END DO;

 Lagrange_interp= SQRT((Sx - Dx)**2 + (Sy - Dy)**2 + (Sz - Dz)**2);
END FUNCTION Lagrange_interp

References

1. Poghosyan, A., Lluch, I., Matevosyan, H., Lamb, A., Moreno, C. A., et al., (2016),

Unified classification for distributed satellite systems. In 4th International

Federated and Fractionated Satellite Systems Workshop, 10-11 Oct, Rome, Italy.

2. Selva, D., A., Golkar, O. Korobova, I. L. I. Cruz, P. Collopy, O.L. de Weck, (2017),

Distributed earth satellite systems: What is needed to move forward?. Journal of

Aerospace Information Systems, 14(8), pp. 412–438.

3. Nelson, B., Yang Yang, F., Carlino, R., Dono Perez, A., Faber, N., Henze, C., ... & Stupl,

J., (2015). Implementation of an Open-Scenario, Long-Term Space Debris

Simulation Approach. In AMOS 2015 Advanced Maui Optical and Space

Surveillance Conference (No. ARC-E-DAA-TN26775).

4. Klinkrad, H., Wegener, P., Wiedemann, C., Bendisch, J. and Krag, H., (2006), Modeling

of the current space debris environment. Space Debris: Models and Risk Analysis,

pp. 59–114.

5. Назаренко, А. И. (2013), Моделирование космического мусора. М.: ИКИ РАН.

6. Casanova, D., Tardioli, C. and Lemaitre, A., (2014), Space debris collision avoidance

using a three-filter sequence. Monthly Notices of the Royal Astronomical Society,

442(4), pp. 3235–3242.

7. Киселев, А.Б. and Яруничев, В.А., (2009), К исследованию фрагментации частиц

космического мусора при высокоскоростном соударении. Вестник

Московского университета. Серия 1. Математика. Механика, (2), pp. 26–35.

8. Smirnov, N. N., Kiselev, A. B., Kondratyev, K. A. and Zolkin, S. N., (2010), Impact of

debris particles on space structures modeling. Acta Astronautica, 67(3-4),

pp. 333–343.

9. Atanassov, A.M., (2016), Parallel satellite orbital situational problems solver for space

missions design and control, Adv. Space Res., v. 58, 9, 2016, pp. 1819–1826.

10. Кубасов, И. Ю., Хасанов, А. Ю. and Блюдов, Е. С., (2022), АЛГОРИТМ

ПРЕДОТВРАЩЕНИЯ СТОЛКНОВЕНИЯ КОСМИЧЕСКИХ АППАРАТОВ.

Известия Тульского государственного университета. Технические науки, (8),

pp. 144–149.

11. Hall, R., Alfano, S., & Ocampo, A., (2010), Advances in satellite conjunction analysis.

In Proceedings of the Advanced Maui Optical and Space Surveillance

Technologies Conference.

12. https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers

13. Rauber, T., Rünger G., (2010), Parallel Programming: For Multicore and Cluster

Systems. Springer. 455 p; DOI 10.1007/978-3-642-04818-0

29

14. Кальницкий, Л.А., Добротин, Д.А., Жевержеев, В.Ф., and Сапогов, Н.А., (1976),

Специальный курс высшей математики для втузов.

15. Atanassov, A.M., (2014), Parallel, adaptive, multi-object trajectory integrator for space

simulation applications. Advances in Space Research, 54(8), pp.1581-1589.

16. Atanassov, A.M., (2023), APPLYING SITUATION ANALYSIS SOLVER TO

SATELLITE-SPACE DEBRIS CLOSE APPROACHES PROBLEMS.

INTERFACE BETWEEN MODELS., in Proceedings of the Nineteenth

International Scientific conference SES2023, 24-26.10.2023, Sofia, Bulgaria, pp.

94–99.

http://space.bas.bg/SES/archive/SES%202023_DOKLADI/1_Space%20Physics/1

1_Atanassov.pdf

ПРИМЕНЕНИЕ ПАРАЛЛЕЛЬНОГО РЕШАТЕЛЯ

ДЛЯ СИТУАЦИОННОГО АНАЛИЗА В ЗАДАЧАХ СБЛИЖЕНИЯ

ИСКУССТВЕННЫХ СПУТНИКОВ С ДРУГИМИ СПУТНИКАМИ

И С КОСМИЧЕСКИМ МУСОРОМ. АЛГОРИТМЫ И

ПОДПРОГРАММЫ

Атанас Атанасов

Аннотация

По мере увеличения количества активных и пассивных

искусственных спутников Земли возрастает вероятность прямых

столкновений, как между различными спутниками, так и между спутниками и

космическим мусором. Анализ функционирования космических систем во

времени должен учитывать возможность таких событий, а также маневры,

выполняемые для снижения опасности прямого столкновения. Рассмотрена

возможность использования разработанного решателя ситуационного анализа

для решения задач сбли-жения многоспутниковых систем и космического

мусора. Этот решатель является одним из вычислительных средств, лежащих

в основе меж-дисциплинарной компьютерной среды для моделирования

космических миссий. Основное внимание уделяется описанию

вычислительных алгоритмов и подпрограмм.

http://space.bas.bg/SES/archive/SES%202023_DOKLADI/1_Space%20Physics/11_Atanassov.pdf
http://space.bas.bg/SES/archive/SES%202023_DOKLADI/1_Space%20Physics/11_Atanassov.pdf

