
16 

 

Bulgarian Academy of Sciences. Space Research and Technology Institute. 

Aerospace Research in Bulgaria. 37, 2025, Sofia 

 

 

 
APPLYING PARALLEL SITUATIONAL ANALYSIS SOLVER  

TO SATELLITE – SPACE DEBRIS CLOSE APPROACH PROBLEMS. 

ALGORITHMS AND SUBROUTINES 

 
Atanas Atanassov 

 

Space Research and Technology Institute – Bulgarian Academy of Sciences 

e-mail: At_M_Atanassov@yahoo.com 

 

Keywords: Space mission analysis and design, Situational analysis, Constraints analysis, 

Close approach, Conjunction analysis 

 

Abstract 
As the number of active and passive satellites orbiting the Earth continues to increase, the 

likelihood of a direct collision with either another satellite or space debris also increases. Any 

analysis of the functionality of space systems over time must take into account the possibility of such 

events and the manoeuvres undertaken to mitigate the risk of a direct collision. This article considers 

the possibility of using the developed solver for situational analysis to solve close-approach problems 

between multi-satellite systems and space debris. This solver is one of several computing tools at the 

core of a multiphysics environment used for space mission simulations. The focus of the article is on 

the calculation models, algorithms, and subroutines used to develop the situational condition for 

"close approach" seeking. 

 

 
1. Introduction 
 

Satellite technology is developing in two main directions: the use of 

smaller satellites and the implementation of multi-satellite missions using smaller 

satellites instead of large multi-purpose ones [1, 2]. The process of space mission 

analysis and design involves clarifying and optimising many parameters linked to 

scientific instruments, satellite subsystems, orbital parameters, or templates of 

multi-satellite systems. 

Computer simulations are playing an increasing role at all stages of 

preparation and operational implementation of multi-satellite missions. The 

development of various computational models, algorithms, and software tools is 

important for solving multidimensional problems related to the analysis and design 

of space missions, as well as for mastering the growing possibilities of the invasion 

of computing technologies. The application of parallel algorithms and calculations 

is crucial in solving large-scale problems that involve hundreds and thousands of 

satellites [3]. 
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An important part of the space missions’ analysis is the so-called 

situational analysis. The situational analysis deals with the determination of 

optimal time intervals suitable for the execution of satellite operations, depending 

on various geometric and physical conditions. This type of analysis is applied to 

different stages of mission preparation - starting with the conceptual study and 

preliminary analysis, going through mission definition, design, and development, 

and finishing with implementation. The close encounters between active satellites, 

active satellites and debris, and between debris give rise to a distinct subfield of 

space research that focuses on scientific problems arising from such interactions.  

Models and algorithms are being developed to analyse long-term and short-term 

changes in the space debris population [4, 5]. Various ideas are also being 

developed to mitigate the problems associated with the growing number of space 

debris [6]. 

The development and research of "close approach" algorithms are driven 

by various reasons, with the main aim being to reduce the risk of collisions 

between active satellites and other objects, such as passive satellites, parts of failed 

satellites, natural debris, or other objects. "Close encounters" are also considered in 

technology development to reduce the number of inactive space objects. The huge 

and growing number of objects presents computational problems that require 

solutions related to the development of parallel algorithms and the use of 

appropriate program models for implementation. It is also important to address the 

problems related to destroying mechanisms in direct collisions between satellites 

and other objects [7, 8]. 

The "close approach" problem can be parameterized by defining acceptable 

values for the dangerous distance between objects, time intervals for passing 

through the "dangerous zone", and the moment of maximum approach. 

This allows the problem to be viewed as situational. This provokes us to 

consider the potential of applying the developed Parallel Situational Analysis 

Solver (PSAS) [9] to tackle such types of problems. This solver was developed at 

the Space Research and Technology Institute at the Bulgarian Academy of 

Sciences. Algorithms and some subroutines are presented in the present work. 

 
2. Concept of situation analysis 
 

The purpose of situational analysis is to assess the feasibility of satellite 

operations considering specific constraints. Each situational problem (𝑆𝑃) is 

composed of one or a conjunction of several situational conditions 𝑠𝑐𝑖 of various 

types: 

𝑆𝑃 = 𝑠𝑐1 ∧ 𝑠𝑐2 ∧ … ∧ 𝑠𝑐𝑛   
The problem of close approach between objects in space involves 

determining the time interval when the objects are at a distance 𝐷(𝑡) less than a 
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certain threshold magnitude 𝐷𝑡ℎ𝑟 and the moment 𝑡𝑐𝑙𝑜𝑠𝑒 when this distance is 

minimal: 

𝐷(𝑡) = √(𝑥(𝑡) 
𝑠 − 𝑥(𝑡) 

𝑑)2 + (𝑦(𝑡) 
𝑠 − 𝑦(𝑡) 

𝑑)2 + (𝑧(𝑡) 
𝑠 − 𝑧(𝑡) 

𝑑)2 < 𝐷𝑡ℎ𝑟 

In the last formula, indices s and d refer to satellites and debris, respectively. The 

risk of collision at such a short distance is considered too likely. In this case, a 

specified minimum threshold of the distance between two objects, below which 

there is a danger of collision, is taken as a limiting condition. Taking into account 

the speeds with which objects move in space around the Earth, the time to pass 

through such a ”dangerous zone“ to a possible collision will be short. Different 

authors consider values of such a threshold from tens to hundreds to tens of 

kilometres [10, 11]. Kubasov proposes an algorithm for preventing collisions 

between satellites [10]. 

In addition to calculating the minimum distance between the two objects, 

the relative velocity 𝑣(𝑡)𝑠,𝑑 
𝑟𝑒𝑙  and the angle 𝜃𝑖 between the two vectors �⃗� 

𝑠 and �⃗� 
𝑑 is 

also relevant at the time of close approach. 

 
3. Parallel solving of ”close approach“ situational problems 
 

In the case of solving problems of the "close approach" type, it is necessary 

to solve a large number of situational problems due to the increasing number of 

active and passive objects, especially in low Earth orbits. Applying the “perigee-

apogee” filter [6] that checks possible conjunctions depending on the geometry of 

the objects' orbits (at some fixed time interval) eliminates the need to apply all-to-

all computation procedures to an actual number of objects [12]. However, the 

reduced number only alleviates the problem without making it negligible.  

A feature of the mathematical model for checking "close approaches" 

between objects results in a variable amount of calculations on different sections of 

their orbits (section 6). Such a model is the source of the so-called "irregular 

calculations" and an imbalance occurs when the calculations are parallelized [13]. 

This is due to the uneven distribution of computational operations between the 

available processors. In case of poor distribution, some processors complete their 

problems and are free, while others continue their calculations. The “Pool of 

threads” model copes with this problem. PSAS was developed to solve a variety of 

types and a large number of situational problems [9]. It is a processing program 

that consistently checks the feasibility of the conditions in a particular situational 

problem. The parallelization is based on computational threads organized in a 

variant [14] of the program model "pool of threads". 

 
4. Situational problems editor 
 

The situational editor, representing a dialogue form with various controls, 

has been developed for composing situational problems. Before creating situational 
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tasks, it is necessary to develop basic objects such as space missions and 

populations of space debris. First, a space mission is selected among those 

displayed in the list box control. Depending on the type of the multi-satellite 

system, they are selected from among possible (contextually determined) 

situational conditions and displayed in another list box control. The remaining 

objects are displayed in another window. One of them can be specified for the 

composition of situational problems between two multidimensional objects (a close 

approach between satellites and space debris, for example). Situational problems 

between satellites from different multi-satellite missions within a federation are 

possible.  

Information necessary for compiling situational tasks is taken from the 

descriptors of the selected objects. Some of this information relates to the 

dimensionality of the objects (number of satellites and number of space debris). 

The values of addresses in the memory where the state vectors of the objects are 

located are also copied from their descriptors. After entering the necessary 

parameters and compiling situational tasks, an actual situational solver is created to 

solve the situational problems.  

 
5. A situational problem description model 
 

A descriptor of situational problems is a one-dimensional array whose 

elements are derived types containing the values of different attributes (parameters 

and constraints as well as results) of the conditions comprised in the problem. The 

first (zero) element of the descriptor contains control information and results about 

the entire situational problem. The following elements contain the values of 

different attributes (parameters and constraints as well as results) of the conditions 

in the situational problem. 

Figure 1 illustrates an approach for creating situational problem descriptor 

objects with the means of the Fortran language. The descriptors of different 

situational problems are combined into a two-dimensional array with dimensions 

K × N, where N is the number of problems and K is the maximum number of 

situational conditions among all problems. 

The UNION statement defines groups of parameters that share memory 

among different situational conditions. The UNION operator specifies an area of 

memory used polymorphically by each function computing different situational 

conditions. The two parameters num_sat_61 and id_debris are located in the same 

memory location but are used when passing the situation condition model to two 

different subroutines, respectively, for checking proximity between objects from 

the same mission or between a satellite and space debris. The close_param array 

contains results from the situational analysis (Fig. 1). These results can be used in 

simulations at subsequent levels of the simulation model. 
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              Fig. 1 Derived types for situational problems compilation 

 
The sit_problem is a derived type that describes different situational 

problems [9]. The UNION statement defines groups of two MAP blocks that 

describe the elements of one situational problem. The first MAP block describes 

the zero element of the situational problem descriptor, which contains control 

parameters and the problem's attributes. The second MAP block allows the 

inheritance of the properties of each situational condition in the situational 

problem. The PSAS interprets situational condition attributes according to the 

identification code sit_code (in zero element of the situational problem). Each 

MODULE  

  type      SitCond 

! general parameters [cyting] 

   … 

   union  
     map …    ! Other situational conditions 
     end  map ! Other situational conditions 

     map                           ! Sit_61/ 

        union 

          map 

              integer     id_debris   ! satellite - space debris & satellite – other mission satellite 

          end map  
          map 

              integer     num_sat_61   ! satellite - satellite 

          end map 

        end union 

          real    distance ! threshold distance 

          real*8    close_param(7)          ! (1),(4)- times of entering/exiting the “dangerous zone” 
                                                            ! (2)- moment of maximal approach 

                                                            ! (3)- the magnitude of the closest distance 

                                                            ! (5)- the current distance between the two objects 
                                                            ! (6)- an angle between the objects' velocities vectors 

                                                            ! (7)- magnitude of the relative velocity 

          real  angle_v1v2 
          real  relative_velosity 

     end map 

     map …  

     end  map ! For other situational conditions 

   end union 
  end type  SitCond 
 

  type     sit_problem 

   union 

     map                                   ! Only for solving control- contains the number of situation conditions 

! general parameters [cyting] 

   … 

     end map 

     map 

       type (SitCond) sit_cond 

     end map 

   end union 

  end type  sit_ problem 

END MODULE 
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function corresponding to a given situational condition interprets the attributes in a 

specific way (kind of polymorphism) depending on a corresponding MAP block.  

 
6. Interpolation of the state vectors  
 

Note that it is impossible to solve a problem of "close approach" between 

two objects based on state vectors determined by numerical integration with a time 

step ∆𝑡 in the order of tens of seconds. This is because at velocities of the order of 

several kilometres per second at which space objects travel (depending on the 

altitudes at the points on the orbit), the distances travelled per integration step can 

be of the order of hundreds of kilometres. Thus, exact values for the moment of 

minimum distance and moments of entry and exit from the "dangerous zone" 

cannot be calculated. It is necessary to use interpolation to find the coordinates of 

the bodies at any time within the step. The Lagrangian method [15] is used in the 

present work. The coordinates and velocities of the objects are calculated with a 

constant time step by applying the Parallel Integrator of systems of differential 

equations for space objects motion integration [14]. To apply an interpolation 

method, the state vectors' last few values must be available. At the stage of creating 

the model of a satellite mission (or other main object, for example, space debris), 

the following structure is created: 

 
The attributes of this structure are assigned values when the space mission 

model is created, and its address is written to the mission descriptor. Access to this 

descriptor is provided when creating situational task models. The address of the 

mentioned structure, along with the addresses of the state vectors of the objects, the 

Lagrange coefficients, and the number of interpolation nodes, is taken from this 

descriptor and passed to the situation solver for solving situational problems. This 

is done at the creation stage of the mission model after the thread pool is created.  

 

7. Algorithm and subroutine for checking for situational condition 
 

The "dangerous zone" search algorithm is based on analyzing the distance 

function between objects 𝐷(𝑡). This function is unimodal over a fairly wide time 

interval. Therefore, within one integration step ∆𝑡, the behaviour of the derivative 

of the distance function at both ends of the step (𝐷′(𝑡) and 𝐷′(𝑡 + 𝑑𝑡)) allows to 

establish the presence of a minimum. At the heart of the algorithm is the 

construction a1: IF-THEN-ELSE IF-END IF a1 (Appendix A). If the derivative at 

type         Nodes_Lagrange 

  integer      nodes,count_nodes 

  integer      denominator_nodes_adr 

  integer      t_nodes_adr,  

  integer   xv_nodes_adr 

end type  Nodes_Lagrange 
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both ends of the step dt is negative, the distance decreases. The condition 

(derivative_1.LT..0D0 .AND. derivative_2.LT..0D0) is checked. In this case, the 

threshold of dangerous convergence between the two objects is checked. This 

requires that the threshold value be intermediate to the distance values at either end 

of the time step. For this purpose, the construction b1: IF-THEN-ELSE IF-END IF 

b1 is used. The (Dist_n .GT. distance .AND. Dist_k .GT. distance) condition check 

applies outside the “dangerous zone” whose dimensions are determined by the 

value of the parameter distance. Similarly, the condition (Dist_n .LT. distance 

.AND. Dist_k .LT. distance) checks for falling "inside" the “dangerous zone”. 

When the condition (Dist_n .GT. distance .AND. Dist_k .LT. distance) is fulfilled, 

the moment of entry of the satellite t_dist into the “dangerous zone” is determined. 

This is done with the Find_threshold() subroutine (Appendix A). 

Analogously, with the condition (derivative_1.GT..0D0 .AND. 

derivative_2.GT..0D0), an increase in the distance between the two objects is 

checked. In this case, the construct b1: IF-THEN-ELSE IF-END IF b1 aims to 

detect the end of the “dangerous zone” and to determine again with the subroutine 

Find_treshold() the moment of exit from it. This subroutine is the result of a 

combination of two separate subroutines for determining the times of entry or exit 

from the “dangerous zone”. Allowed values of the first actual parameter var are 1 

or 2, for the beginning and exit times, respectively. 

The condition (derivative_1.GE..0D0 .AND. derivative_2.LE..0D0) 

corresponds to reaching a local maximum of the function 𝐷(𝑡) and is only for 

completeness, in fact, its check can be removed. The last condition 

(derivative_1.LE..0D0.AND.derivative_2.GE..0D0) refers to finding a local 

minimum of the function 𝐷(𝑡) contained within the current step. This is 

accomplished with the Zero_deriv() subroutine, which looks for the instant in time 

for which the derivative 𝐷′(𝑡) has a zero value. 

It is possible to pass through the danger zone in a single integration time 

step, depending on the relative velocities of the objects and the step size ∆𝑡. For 

this purpose, after determining the values of the minimum distance and the moment 

when it is reached, it is also checked for the moments of entry and exit from the 

“dangerous zone”. It is possible for one or both of the moments to fall within the 

time frame of the current step ∆𝑡. 

 

8. Auxilary subroutines 
 

A subroutine that calculates the distance between two objects 

The subroutine Lagrange_interp calculates the value of the function 𝐷(𝑡) 

at any time 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘], where k is the serial number of the node in the Lagrange 

interpolation. Partially pre-calculated Lagrange coefficients are used. With 

additional calculations using the coordinates of the objects in the last few moments, 
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the final coefficients are calculated. After determining the coordinates of the 

objects at the desired moment, the distance between them is calculated. 
 

Subroutine to determine the derivative of the function D(t) 

The subroutine First_deriv determines the derivative 𝐷′(𝑡) of the distance 

function. This is done by determining the values of the distance function at two 

close points in time 𝐷(𝑡) and 𝐷(𝑡 − ∆𝑡). Finally, the value of the derivative 
 

𝐷′(𝑡) = (𝐷(𝑡) −  𝐷(𝑡 − ∆𝑡))/∆𝑡. 
 

Subroutine for finding the boundaries of the “dangerous zone” 

The subroutine Find_threshold determines the boundaries of the 

“dangerous zone” at intermediate times 𝑡𝑏𝑒𝑔/𝑒𝑛𝑑 ∈ [𝑡𝑘−1, 𝑡𝑘]. It combines two 

separate subroutines, depending on the var parameter, determining the moments 

when the objects are at the beginning or the end of the close approach area. 

The search is done with an iterative method, halving each subsequent 

interval and checking the distance value (defined by the program) if it is greater or 

less than the set limit value. Depending on the results of the checks, the limits of 

the interval change. The process is always convergent. 
 

Subroutine for finding minimum distance 

The subroutine searches for the minimum of the function 𝐷(𝑡) in the 

interval for which the derivative is negative at the beginning and positive at the 

end. The function 𝐷(𝑡) is unimodal and has a single minimum within the 

considered interval. Again, the bisection method is applied, using the First_deriv 

subroutine to determine the derivative in the middle of the interval and check its 

value. Depending on the sign of the derivative at the midpoint, one of the 

boundaries of the considered interval changes. Thus, the interval is shortened with 

each iteration. The process is convergent and terminates when a value for the 

derivative has reached some small limiting value. 

We should note that an interface to connect objects from different missions 

was developed to solve inter-mission situational problems [16]. In addition to 

solving situational tasks, this approach is also applicable in other cases when 

information from different missions is necessary. 

 

9. Examples of applying the presented approach and subroutines 
 

Seven orbits have been selected for testing the approach and subroutines 

that determine the moments of passing through the "dangerous zone". They have 

equal semi-major axes 𝑎𝑛 = 7,200 km, eccentricities 𝑒𝑛 = .001, and  perigee  

arguments 𝜔𝑛 = .0 deg. Different values of inclinations 𝑖𝑛 and ascending nodes Ω𝑛, 

given in Table 1, are selected to ensure an approach between the objects. 
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     Table 1. Parameters of the orbits used in the numerical experiments 
 

Orbits 1 2 3 4 5 6 7 

Inclination [deg] .0 1.0 90.0 180.0 90.0 45.0 135.0 

Ascending node [deg] 0.0 0.0 0.0 0.0 90.0 0.0 90.0 

 

Within the performed experiments, the integration of the equations of 

motion was performed with different time steps. The test results at an integration 

step Δ𝑡 = 10 s are presented in Table 2. The accuracy of the calculated times 

depends only on the integration accuracy! 

 
Table 2. Calculation results based on the orbits from Table 1 

 

Pairs of 

orbits 

Minimum 

distance [m] 

Entering the 

“dangerous zone” 

[s] 

Moment of 

minimum distance 

[s] 

Exiting the 

“dangerous zone 

[s] 

Relative 

velocity [m/s] 

1-2 .00050 2963.04955 3040.21874 3117.38792  129.72 

1-3 .04050 3039.26739 3040.21874 3041.17010  10511.158 

1-4 .05727 3039.54603 3040.21874 3040.89145  14865.022 

3-5  I .02433 1517.15041 1518.10078 1519.05115  10522.077 

3-5 II .03643 4561.38629 4562.33665 4563.28702  10522.078 

6-7  I .06134   922.07540   922.85091   923.62641  12894.581 

6-7 II .02911 3965.57317 3966.34961 3967.12604  12879.140 

 

When the orbital planes make a small angle (the pair of objects 1-2) the 

“dangerous zone” is relatively extended in time. At large angles, however, passing 

through the “dangerous zone” occurs in shorter time intervals. 

 
10. Conclusion and outlook 
 

An algorithm and subroutines for checking a situational condition to search 

for a close approach between two orbital objects are presented in this article. These 

subroutines are designed to function within the framework of the situation solver 

being developed. This class of situational tasks can be linked with others, such as 

the destruction of space debris and the destruction of whole satellites, subsystems, 

or individual devices. Furthermore, the time functionality of satellites within 

individual missions (or within federations) can be explored to perform the targeted 

tasks. 

 
Appendix A. Source code of the subroutines checking the situational conditions 
 

!************************************************************************************ 
! <Sit___61>- Close approach between "satellite-satellite" 

! 

!    node_t(node,1)= t 
!    object1_nodes   - coordinates of the first satellite 
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!    object2_nodes   - coordinates of the second satellite 

!   <First_deriv>    - calculates the derivative at the moment t 

!   <First_treshold> - determines the first moment t when the distance is equal to <distance> 
!           <Flag_1> - <First_treshold> was passed 

!   <Seconf_treshold>- determines the last moment t when the distance is equal to <distance> 

!           <Flag_2> - <Seconf_treshold> was passed 
!   <close_param>    - 7 elements array;  

!    close_param(1)  - passing moments for <First_treshold> 

!    close_param(2)  - passing moments for <Dist_close> 
!    close_param(3)  - magnitude of <Dist_close> 

!    close_param(4)  - passing moments for <Second_treshold> 

!    close_param(5)  - the current distance between the two objects 
!    close_param(6)  - an angle between the objects' velocities vectors 

!    close_param(7)  - magnitude of the relative velocity 

!.................................................................................................* 

FUNCTION      Sit___61(t,dt,object1_adr,object2_adr,nodes,nodes_count,node_t_adr,adr_znam_nodes, & 

                                              distance,close_param,angle_v1v2, fl_rezults,duration,begin_sit,dt_sit,t12,id_debris) 

   logical     Sit___61,                              fl_rezults,         begin_sit 
   integer                   object1_adr,object2_adr, adr_znam_nodes 

   real                                      distance,angle_v1v2,duration,                 t12*8(2,3) 

   real*8               t,dt, tt,close_param(5) 
   real*8                    object1_nodes(6,nodes),object2_nodes(6,nodes),node_t(nodes),node_znam(nodes) 

   logical        flag,flag_1[save],flag_2[save] 

   real*8      derivative_1,derivative_2,Dist,t_dist,Dist_n,Dist_k,t_close,dist_close 
   real*8     v1v2_delta,delta_v1v2 

!_____________________________________ 

   AUTOMATIC      flag,flag_1,flag_2,Dist_n,Dist_k,derivative_1,derivative_2,Dist_close,t_dist 
   POINTER(node_t_adr,node_t);               POINTER(adr_znam_nodes,node_znam) 

   POINTER(object1_adr,object1_nodes); POINTER(object2_adr,object2_nodes)  

 
   IF(nodes_count.LT.nodes) THEN 

                 Sit___61=.false.;       RETURN 

       ENDIF 

 

                        t= node_t(nodes - 1); 

              Dist_n=.0D0; Dist_k=.0D0 
      DO            i=1,3 

             Dist_n= DIST_n + (object1_nodes(i,nodes-1) - object2_nodes(i,nodes-1))**2 

             Dist_k= DIST_k + (object1_nodes(i,nodes  ) - object2_nodes(i,nodes  ))**2 
      END DO; Dist_n= SQRT(Dist_n); Dist_k= SQRT(Dist_k); close_param(5)= Dist_k 

 
                 derivative_1= First_deriv (node_t(nodes-1),nodes,node_t,object1_nodes,object2_nodes,node_znam)   

                 derivative_2= First_deriv (node_t(nodes  ),nodes,node_t,object1_nodes,object2_nodes,node_znam)  

a1:      IF(derivative_1.LT..0D0.AND.derivative_2.LT..0D0) THEN ! Decreasing distance 
                    flag_2=.false. 

   b1:               IF(Dist_n  .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold 

              ELSEIF(Dist_n  .LT. distance .AND. Dist_k  .LT. distance) THEN ! The threshold is passed 
              ELSEIF(Dist_n .GT. distance  .AND. Dist_k .LT. distance) THEN ! Passing the threshold 

                           flag_1= Find_treshold(1, node_t,distance, t_dist, Dist_n,Dist_k,nodes,node_znam, & 

                                                                                                             object1_nodes,object2_nodes)  
                                                                   close_param(1)= t_dist;         flag_2=.true. 

               ENDIF b1 

  ELSEIF(derivative_1.GT..0D0.AND.derivative_2.GT..0D0) THEN ! Increasing distance 
                     flag_1=.false. 

   b2:               IF(Dist_n .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold 

              ELSEIF(Dist_n .LT. distance .AND. DIst_k .LT. distance) THEN ! The threshold is not passed yet 

              ELSEIF(Dist_n .LT. distance .AND. Dist_k .GT. distance) THEN ! Ima prag 

                           flag_2= Second_treshold(node_t,distance,t_dist,Dist_n,Dist_k,nodes,node_znam, & 
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                                                                                                             object1_nodes,object2_nodes)  

                                                                   close_param(4)= t_dist;         flag_2=.true. 

               ENDIF b2 

  ELSEIF(derivative_1.GE..0D0.AND.derivative_2.LE..0D0) THEN ! Local maximum 

  ELSEIF(derivative_1.LE..0D0.AND.derivative_2.GE..0D0) THEN ! Local minimum 

              Dist_close= Zero_deriv(node_t,nodes,t_close,object1_nodes,object2_nodes,node_znam);  
                                               close_param(2)= t_close 

                                               close_param(3)= Dist_close; close_param(5)= Dist_close 

 
           delta_v1v2= Velosity_interp(t_close,nodes,node_t,object1_nodes,object2_nodes,node_znam);  

 

   b3:  IF(Dist_n.GT.distance.AND.Dist_close.LT.distance) THEN ! If the first threshold isn’t passed 
              flag_1= First_treshol (node_t(nodes-1),t_close,node_t,distance,t_dist,Dist_n,Dist_k,nodes, &  

                                                                                          node_znam,object1_nodes, object2_nodes) 

                                                                                        close_param(1)= t_dist;         flag_1=.true. 

           ENDIF b3 

  

   b4:  IF(Dist_close.LT.distance.AND.Dist_k.GT.distance) THEN ! Ima prag v ostavashtata chast na stapkata 
              flag_2= Second_treshol (t_close,node_t(nodes),node_t,distance,t_dist,Dist_n,Dist_k,nodes, & 

                                                                                            node_znam,object1_nodes,object2_nodes) 

                                                                                         close_param(4)= t_dist;         flag_2=.true. 

            ENDIF b4 

   ENDIF а1;  

                                 Sit___61=.true. 
END FUNCTION  Sit___61 

 

!********************************************************************* 
! <First_deriv>- determines the first derivative in the moment <t> 

!........................................................................................................................................* 

FUNCTION   First_deriv(t,nodes,node_t,       node_1,                node_2,               node_znam) 
   real*8           First_deriv 

   real*8                  t,node_t(nodes),                 node_1(6,nodes),node_2(6,nodes),node_znam(nodes) 

   real*8            dt/.00001/, Dist1, Dist0, Lagrange_interp 
    AUTOMATIC  Dist1,Dist0 

 

          Dist1= Lagrange_interp (t   ,nodes, node_t,node_1,node_2,node_znam) 
          Dist0= Lagrange_interp (t-dt,nodes, node_t,node_1,node_2,node_znam); 

  

                                 First_deriv= (Dist1 - Dist0)/dt  
END FUNCTION  First_deriv 

 
!************************************************************************* 

! First derivative - zero; minimum distance 

!_________________________________________________________________________ 
FUNCTION  Zero_deriv(node_t,nodes,  t_close, node_1,                node_2,               node_znam) 

   real*8          Zero_deriv 

   real*8                             node_t(nodes),t_close, node_1(6,nodes),node_2(6,nodes),node_znam(nodes) 
   real*8     First_deriv, Lagrange_interp, t_1,t_2,tm, Dist_close 

   AUTOMATIC      t_1,t_2,tm,Dist_close 
 

                                              t_1= node_t(nodes-1);   t_2= node_t(nodes);   tm= t_1 + .5*(t_2 - t_1) 
                                   derivative= First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);  

   DO WHILE(ABS(derivative).GT..00001.AND.(t_2-t_1).GE..00001);  

                              IF(derivative.GT..0D0) THEN 
                                           t_2= tm 

                    ELSEIF(derivative.LT..0D0) THEN  

                                           t_1= tm 

                     ENDIF; tm= t_1 + .5*(t_2 - t_1) 
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                                   derivative= First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);  

   END DO; 

                                                         Dist_close= Lagrange_interp (tm,nodes, node_t,node_1,node_2,node_znam);  
                                    Zero_deriv= Dist_close; t_close= tm 

END FUNCTION     Zero_deriv 
 

!*********************************************************** 
! <Find_treshold>- finds the start and end times of the “dangerous zone” 

!           <var>- var=1 - finds the first threshold 

!                       var=2 - finds the second threshold 
!___________________________________________________________ 

FUNCTION  Find_treshold(var,tn,tk,node_t,distance,ts,Dist_n,Dist_k,nodes,node_znam,    node_1,      node_2) 

   logical          Find_treshold 
   integer                                 var 

   real                                                                 distance   

   real*8                                        tn,tk,node_t(nodes),  ts,Dist_n,Dist_k,          node_znam(1),node_1(1),node_2(1) 
   real*8     Disr_n,Disr_k,Dist_t,tt,t1,t2,Lagrange_interp,delta   

   real*8,parameter ::  tol=.01 

   AUTOMATIC  Disr_n,Disr_k,Dist_t,t1,t2,tt 
 

                        t1= tn; t2= tk; Disr_n= Dist_n; Disr_k= Dist_k; Find_treshold=.false.;!var_12= 2 

                        tt= t1 + .5*(t2 - t1)   
              IF(var.EQ.1) THEN; delta= Disr_n - Disr_k 

                                     ELSE; delta= Disr_k - Disr_n 

                  ENDIF 

a:      DO WHILE(delta.GT.tol) 

                   Dist_t= Lagrange_interp(tt,nodes,node_t,node_1,node_2,node_znam) 

                        IF(Dist_t.GT.distance) THEN 
                          IF(var.EQ.1) THEN; Disr_n= Dist_t; t1= tt 

                                                 ELSE; Disr_k= Dist_t; t2= tt 

                             ENDIF 

              ELSEIF(Dist_t.LЕ.distance) THEN 

                          IF(var.EQ.1) THEN; Disr_k= Dist_t; t2= tt 

                                                  ELSE; Disr_n= Dist_t; t1= tt 

                             ENDIF 

                ENDIF; 

                   ts= tt; tt= t1 + .5*(t2 - t1) 
                          IF(var.EQ.1) THEN; delta= Disr_n - Disr_k 

                                                  ELSE; delta= Disr_k - Disr_n 

                             ENDIF 

      END DO a; 

                                     Find_treshold=.true. 

END FUNCTION      Find_treshold 

 

!************************************************************************************ 

! <Lagrange_interp>- determines the minimal distance between two objects in a time moment <t> 
!                                                                                                           Lagrange interpolation is applied 

!____________________________________________________________________________________ 

FUNCTION  Lagrange_interp(t,nodes,node_t,              node_s,               node_d,               node_znam) 
   real*8           Lagrange_interp 

   real*8                                      t,           node_t(nodes),node_s(6,nodes),node_d(6,nodes),node_znam(nodes) 

   real*8            rt, numerator, Sx, Sy, Sz, Dx, Dy, Dz, coeff_Lagrange 
   AUTOMATIC  numerator, Sx, Sy, Sz, Dx, Dy, Dz, coeff_Lagrange 
 

                      Sx= 0.D0; Sy= 0.D0; Sz= 0.D0; Dx= 0.D0; Dy= 0.D0; Dz= 0.D0; rt= t;  
      DO          nd=1,nodes 

             numerator = 1.D0;  

           DO    md=1,nodes 

                IF(md.NE.nd) THEN 
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                           numerator = numerator *(rt - node_t(md)) 

                   ENDIF 

           END DO; 
              coeff_Lagrange= numerator *node_znam(nd);  

                                    Sx= Sx + node_s(1,nd)*coeff_Lagrange;     Dx= Dx + node_d(1,nd)*coeff_Lagrange 

                                    Sy= Sy + node_s(2,nd)*coeff_Lagrange;     Dy= Dy + node_d(2,nd)*coeff_Lagrange 
                                    Sz= Sz + node_s(3,nd)*coeff_Lagrange;     Dz= Dz + node_d(3,nd)*coeff_Lagrange 

      END DO; 

                                 Lagrange_interp= SQRT((Sx - Dx)**2 + (Sy - Dy)**2 + (Sz - Dz)**2); 
END FUNCTION  Lagrange_interp 
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ПРИМЕНЕНИЕ ПАРАЛЛЕЛЬНОГО РЕШАТЕЛЯ  

ДЛЯ СИТУАЦИОННОГО АНАЛИЗА В ЗАДАЧАХ СБЛИЖЕНИЯ 

ИСКУССТВЕННЫХ СПУТНИКОВ С ДРУГИМИ СПУТНИКАМИ  

И С КОСМИЧЕСКИМ МУСОРОМ. АЛГОРИТМЫ И 

ПОДПРОГРАММЫ 

  
Атанас Атанасов 

  
Аннотация 

По мере увеличения количества активных и пассивных 

искусственных спутников Земли возрастает вероятность прямых 

столкновений, как между различными спутниками, так и между спутниками и 

космическим мусором. Анализ функционирования космических систем во 

времени должен учитывать возможность таких событий, а также маневры, 

выполняемые для снижения опасности прямого столкновения. Рассмотрена 

возможность использования разработанного решателя ситуационного анализа 

для решения задач сбли-жения многоспутниковых систем и космического 

мусора. Этот решатель является одним из вычислительных средств, лежащих 

в основе меж-дисциплинарной компьютерной среды для моделирования 

космических миссий. Основное внимание уделяется описанию 

вычислительных алгоритмов и подпрограмм. 
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