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Abstract

As the number of active and passive satellites orbiting the Earth continues to increase, the
likelihood of a direct collision with either another satellite or space debris also increases. Any
analysis of the functionality of space systems over time must take into account the possibility of such
events and the manoeuvres undertaken to mitigate the risk of a direct collision. This article considers
the possibility of using the developed solver for situational analysis to solve close-approach problems
between multi-satellite systems and space debris. This solver is one of several computing tools at the
core of a multiphysics environment used for space mission simulations. The focus of the article is on
the calculation models, algorithms, and subroutines used to develop the situational condition for
"close approach" seeking.

1. Introduction

Satellite technology is developing in two main directions: the use of
smaller satellites and the implementation of multi-satellite missions using smaller
satellites instead of large multi-purpose ones [1, 2]. The process of space mission
analysis and design involves clarifying and optimising many parameters linked to
scientific instruments, satellite subsystems, orbital parameters, or templates of
multi-satellite systems.

Computer simulations are playing an increasing role at all stages of
preparation and operational implementation of multi-satellite missions. The
development of various computational models, algorithms, and software tools is
important for solving multidimensional problems related to the analysis and design
of space missions, as well as for mastering the growing possibilities of the invasion
of computing technologies. The application of parallel algorithms and calculations
is crucial in solving large-scale problems that involve hundreds and thousands of
satellites [3].
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An important part of the space missions’ analysis is the so-called
situational analysis. The situational analysis deals with the determination of
optimal time intervals suitable for the execution of satellite operations, depending
on various geometric and physical conditions. This type of analysis is applied to
different stages of mission preparation - starting with the conceptual study and
preliminary analysis, going through mission definition, design, and development,
and finishing with implementation. The close encounters between active satellites,
active satellites and debris, and between debris give rise to a distinct subfield of
space research that focuses on scientific problems arising from such interactions.
Models and algorithms are being developed to analyse long-term and short-term
changes in the space debris population [4, 5]. Various ideas are also being
developed to mitigate the problems associated with the growing number of space
debris [6].

The development and research of "close approach™ algorithms are driven
by various reasons, with the main aim being to reduce the risk of collisions
between active satellites and other objects, such as passive satellites, parts of failed
satellites, natural debris, or other objects. "Close encounters™ are also considered in
technology development to reduce the number of inactive space objects. The huge
and growing number of objects presents computational problems that require
solutions related to the development of parallel algorithms and the use of
appropriate program models for implementation. It is also important to address the
problems related to destroying mechanisms in direct collisions between satellites
and other objects [7, 8].

The "close approach" problem can be parameterized by defining acceptable
values for the dangerous distance between objects, time intervals for passing
through the "dangerous zone", and the moment of maximum approach.

This allows the problem to be viewed as situational. This provokes us to
consider the potential of applying the developed Parallel Situational Analysis
Solver (PSAS) [9] to tackle such types of problems. This solver was developed at
the Space Research and Technology Institute at the Bulgarian Academy of
Sciences. Algorithms and some subroutines are presented in the present work.

2. Concept of situation analysis

The purpose of situational analysis is to assess the feasibility of satellite
operations considering specific constraints. Each situational problem (SP) is
composed of one or a conjunction of several situational conditions sc; of various
types:

SP =5scy Ascy A ...\ scy,

The problem of close approach between objects in space involves
determining the time interval when the objects are at a distance D(t) less than a
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certain threshold magnitude D,,,- and the moment t.;,s. When this distance is
minimal:

D(t) =V (x(t)* = x(OD? + ((8)° — y(©)D? + (2(t)° — 2(t))? < Dypy
In the last formula, indices s and d refer to satellites and debris, respectively. The
risk of collision at such a short distance is considered too likely. In this case, a
specified minimum threshold of the distance between two objects, below which
there is a danger of collision, is taken as a limiting condition. Taking into account
the speeds with which objects move in space around the Earth, the time to pass
through such a dangerous zone“ to a possible collision will be short. Different
authors consider values of such a threshold from tens to hundreds to tens of
kilometres [10, 11]. Kubasov proposes an algorithm for preventing collisions
between satellites [10].

In addition to calculating the minimum distance between the two objects,

the relative velocity v(t);edl and the angle 6; between the two vectors ¥ and ¢ is
also relevant at the time of close approach.

3. Parallel solving of ”close approach* situational problems

In the case of solving problems of the "close approach" type, it is necessary
to solve a large number of situational problems due to the increasing number of
active and passive objects, especially in low Earth orbits. Applying the “perigee-
apogee” filter [6] that checks possible conjunctions depending on the geometry of
the objects' orbits (at some fixed time interval) eliminates the need to apply all-to-
all computation procedures to an actual number of objects [12]. However, the
reduced number only alleviates the problem without making it negligible.

A feature of the mathematical model for checking "close approaches™
between objects results in a variable amount of calculations on different sections of
their orbits (section 6). Such a model is the source of the so-called "irregular
calculations” and an imbalance occurs when the calculations are parallelized [13].
This is due to the uneven distribution of computational operations between the
available processors. In case of poor distribution, some processors complete their
problems and are free, while others continue their calculations. The “Pool of
threads” model copes with this problem. PSAS was developed to solve a variety of
types and a large number of situational problems [9]. It is a processing program
that consistently checks the feasibility of the conditions in a particular situational
problem. The parallelization is based on computational threads organized in a
variant [14] of the program model "pool of threads".

4. Situational problems editor

The situational editor, representing a dialogue form with various controls,
has been developed for composing situational problems. Before creating situational
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tasks, it is necessary to develop basic objects such as space missions and
populations of space debris. First, a space mission is selected among those
displayed in the list box control. Depending on the type of the multi-satellite
system, they are selected from among possible (contextually determined)
situational conditions and displayed in another list box control. The remaining
objects are displayed in another window. One of them can be specified for the
composition of situational problems between two multidimensional objects (a close
approach between satellites and space debris, for example). Situational problems
between satellites from different multi-satellite missions within a federation are
possible.

Information necessary for compiling situational tasks is taken from the
descriptors of the selected objects. Some of this information relates to the
dimensionality of the objects (number of satellites and number of space debris).
The values of addresses in the memory where the state vectors of the objects are
located are also copied from their descriptors. After entering the necessary
parameters and compiling situational tasks, an actual situational solver is created to
solve the situational problems.

5. Asituational problem description model

A descriptor of situational problems is a one-dimensional array whose
elements are derived types containing the values of different attributes (parameters
and constraints as well as results) of the conditions comprised in the problem. The
first (zero) element of the descriptor contains control information and results about
the entire situational problem. The following elements contain the values of
different attributes (parameters and constraints as well as results) of the conditions
in the situational problem.

Figure 1 illustrates an approach for creating situational problem descriptor
objects with the means of the Fortran language. The descriptors of different
situational problems are combined into a two-dimensional array with dimensions
K x N, where N is the number of problems and K is the maximum number of
situational conditions among all problems.

The UNION statement defines groups of parameters that share memory
among different situational conditions. The UNION operator specifies an area of
memory used polymorphically by each function computing different situational
conditions. The two parameters num_sat_61 and id_debris are located in the same
memory location but are used when passing the situation condition model to two
different subroutines, respectively, for checking proximity between objects from
the same mission or between a satellite and space debris. The close_param array
contains results from the situational analysis (Fig. 1). These results can be used in
simulations at subsequent levels of the simulation model.
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MODULE
type  SitCond
| general parameters [cyting]

union

map ... ! Other situational conditions
end map ! Other situational conditions
map 1 Sit_61/
union
map
integer id_debris ! satellite - space debris & satellite — other mission satellite
end map
map
integer num_sat 61 !satellite - satellite
end map
end union
real distance ! threshold distance
real*8 close_param(7) 1(1),(4)- times of entering/exiting the “dangerous zone”

1 (2)- moment of maximal approach
! (3)- the magnitude of the closest distance
1 (5)- the current distance between the two objects
1 (6)- an angle between the objects' velocities vectors
1 (7)- magnitude of the relative velocity
real angle_vlv2
real relative_velosity
end map
map ...
end map ! For other situational conditions
end union
end type SitCond

type sit_problem
union

map ! Only for solving control- contains the number of situation conditions
| general parameters [cyting]

end map
map
type (SitCond) sit_cond
end map
end union
end type sit_ problem
END MODULE

Fig. 1 Derived types for situational problems compilation

The sit_problem is a derived type that describes different situational
problems [9]. The UNION statement defines groups of two MAP blocks that
describe the elements of one situational problem. The first MAP block describes
the zero element of the situational problem descriptor, which contains control
parameters and the problem's attributes. The second MAP block allows the
inheritance of the properties of each situational condition in the situational
problem. The PSAS interprets situational condition attributes according to the
identification code sit_code (in zero element of the situational problem). Each
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function corresponding to a given situational condition interprets the attributes in a
specific way (kind of polymorphism) depending on a corresponding MAP block.

6. Interpolation of the state vectors

Note that it is impossible to solve a problem of “close approach™ between
two objects based on state vectors determined by numerical integration with a time
step At in the order of tens of seconds. This is because at velocities of the order of
several kilometres per second at which space objects travel (depending on the
altitudes at the points on the orbit), the distances travelled per integration step can
be of the order of hundreds of kilometres. Thus, exact values for the moment of
minimum distance and moments of entry and exit from the "dangerous zone"
cannot be calculated. It is necessary to use interpolation to find the coordinates of
the bodies at any time within the step. The Lagrangian method [15] is used in the
present work. The coordinates and velocities of the objects are calculated with a
constant time step by applying the Parallel Integrator of systems of differential
equations for space objects motion integration [14]. To apply an interpolation
method, the state vectors' last few values must be available. At the stage of creating
the model of a satellite mission (or other main object, for example, space debris),
the following structure is created:

type Nodes_Lagrange

integer  nodes,count_nodes
integer  denominator_nodes_adr
integer  t nodes_adr,

integer xv_nodes_adr

end type Nodes Lagrange

The attributes of this structure are assigned values when the space mission
model is created, and its address is written to the mission descriptor. Access to this
descriptor is provided when creating situational task models. The address of the
mentioned structure, along with the addresses of the state vectors of the objects, the
Lagrange coefficients, and the number of interpolation nodes, is taken from this
descriptor and passed to the situation solver for solving situational problems. This
is done at the creation stage of the mission model after the thread pool is created.

7. Algorithm and subroutine for checking for situational condition

The "dangerous zone" search algorithm is based on analyzing the distance
function between objects D(t). This function is unimodal over a fairly wide time
interval. Therefore, within one integration step At, the behaviour of the derivative
of the distance function at both ends of the step (D'(t) and D'(t + dt)) allows to
establish the presence of a minimum. At the heart of the algorithm is the
construction al: IF-THEN-ELSE IF-END IF al (Appendix A). If the derivative at
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both ends of the step dt is negative, the distance decreases. The condition
(derivative_1.LT..0DO .AND. derivative_2.LT..0DO0) is checked. In this case, the
threshold of dangerous convergence between the two objects is checked. This
requires that the threshold value be intermediate to the distance values at either end
of the time step. For this purpose, the construction bl: IF-THEN-ELSE IF-END IF
bl is used. The (Dist_n .GT. distance .AND. Dist_k .GT. distance) condition check
applies outside the “dangerous zone” whose dimensions are determined by the
value of the parameter distance. Similarly, the condition (Dist_n .LT. distance
AND. Dist_k .LT. distance) checks for falling "inside" the “dangerous zone”.
When the condition (Dist_n .GT. distance .AND. Dist_k .LT. distance) is fulfilled,
the moment of entry of the satellite t_dist into the “dangerous zone” is determined.
This is done with the Find_threshold() subroutine (Appendix A).

Analogously, with the condition (derivative_1.GT..0DO .AND.
derivative_2.GT..0D0), an increase in the distance between the two objects is
checked. In this case, the construct bl: IF-THEN-ELSE IF-END IF bl aims to
detect the end of the “dangerous zone” and to determine again with the subroutine
Find_treshold() the moment of exit from it. This subroutine is the result of a
combination of two separate subroutines for determining the times of entry or exit
from the “dangerous zone”. Allowed values of the first actual parameter var are 1
or 2, for the beginning and exit times, respectively.

The condition (derivative_1.GE..ODO .AND. derivative_2.LE..0DO)
corresponds to reaching a local maximum of the function D(t) and is only for
completeness, in fact, its check can be removed. The last condition
(derivative_1.LE..ODO.AND.derivative_2.GE..0D0) refers to finding a local
minimum of the function D(t) contained within the current step. This is
accomplished with the Zero_deriv() subroutine, which looks for the instant in time
for which the derivative D’ (t) has a zero value.

It is possible to pass through the danger zone in a single integration time
step, depending on the relative velocities of the objects and the step size At. For
this purpose, after determining the values of the minimum distance and the moment
when it is reached, it is also checked for the moments of entry and exit from the
“dangerous zone”. It is possible for one or both of the moments to fall within the
time frame of the current step At.

8. Auxilary subroutines

A subroutine that calculates the distance between two objects

The subroutine Lagrange_interp calculates the value of the function D(t)
at any time t € [t,_4, t; ], where k is the serial number of the node in the Lagrange
interpolation. Partially pre-calculated Lagrange coefficients are used. With
additional calculations using the coordinates of the objects in the last few moments,
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the final coefficients are calculated. After determining the coordinates of the
objects at the desired moment, the distance between them is calculated.

Subroutine to determine the derivative of the function D(t)

The subroutine First_deriv determines the derivative D'(t) of the distance
function. This is done by determining the values of the distance function at two
close points in time D(t) and D (t — At). Finally, the value of the derivative

D'(t) = (D(t) — D(t — At))/At.

Subroutine for finding the boundaries of the “dangerous zone”

The subroutine Find_threshold determines the boundaries of the
“dangerous zone” at intermediate times t,eg/ena € [tk—1,tk]- It combines two
separate subroutines, depending on the var parameter, determining the moments
when the objects are at the beginning or the end of the close approach area.

The search is done with an iterative method, halving each subsequent
interval and checking the distance value (defined by the program) if it is greater or
less than the set limit value. Depending on the results of the checks, the limits of
the interval change. The process is always convergent.

Subroutine for finding minimum distance

The subroutine searches for the minimum of the function D(t) in the
interval for which the derivative is negative at the beginning and positive at the
end. The function D(t) is unimodal and has a single minimum within the
considered interval. Again, the bisection method is applied, using the First_deriv
subroutine to determine the derivative in the middle of the interval and check its
value. Depending on the sign of the derivative at the midpoint, one of the
boundaries of the considered interval changes. Thus, the interval is shortened with
each iteration. The process is convergent and terminates when a value for the
derivative has reached some small limiting value.

We should note that an interface to connect objects from different missions
was developed to solve inter-mission situational problems [16]. In addition to
solving situational tasks, this approach is also applicable in other cases when
information from different missions is necessary.

9. Examples of applying the presented approach and subroutines

Seven orbits have been selected for testing the approach and subroutines
that determine the moments of passing through the "dangerous zone". They have
equal semi-major axes a, = 7,200 km, eccentricities e, = .001, and perigee
arguments w,, = .0 deg. Different values of inclinations i,, and ascending nodes £,,,
given in Table 1, are selected to ensure an approach between the objects.
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Table 1. Parameters of the orbits used in the numerical experiments

Orbits 1 2 3 4 5 6 7
Inclination [deg] .0 [ 1.0 90.0 | 180.0 | 90.0 | 45.0 | 135.0
Ascending node [deg] | 0.0 | 0.0 | 0.0 0.0 90.0 | 0.0 90.0

Within the performed experiments, the integration of the equations of
motion was performed with different time steps. The test results at an integration
step At = 10 s are presented in Table 2. The accuracy of the calculated times
depends only on the integration accuracy!

Table 2. Calculation results based on the orbits from Table 1

Pairs of | Minimum Entering the Moment of Exiting the Relative
orbits |distance [m] “dange?ljls zone” Iminimum distance “dangeEO]US zone |velocity [m/s]
s [s] S
1-2 .00050 2963.04955 3040.21874 3117.38792 129.72
1-3 .04050 3039.26739 3040.21874 3041.17010 |10511.158
1-4 .05727 3039.54603 3040.21874 3040.89145 |14865.022
3-5 | .02433 1517.15041 1518.10078 1519.05115 |10522.077
3-5 11 .03643 4561.38629 4562.33665 4563.28702 |10522.078
6-7 | .06134 922.07540 922.85091 923.62641 [12894.581
6-7 11 .02911 3965.57317 3966.34961 3967.12604 |12879.140

When the orbital planes make a small angle (the pair of objects 1-2) the
“dangerous zone” is relatively extended in time. At large angles, however, passing
through the “dangerous zone” occurs in shorter time intervals.

10. Conclusion and outlook

An algorithm and subroutines for checking a situational condition to search
for a close approach between two orbital objects are presented in this article. These
subroutines are designed to function within the framework of the situation solver
being developed. This class of situational tasks can be linked with others, such as
the destruction of space debris and the destruction of whole satellites, subsystems,
or individual devices. Furthermore, the time functionality of satellites within
individual missions (or within federations) can be explored to perform the targeted
tasks.

Appendix A. Source code of the subroutines checking the situational conditions

!
1<Sit___ 61>- Close approach between "satellite-satellite”
!

I node_t(node,1)=t

I objectl_nodes - coordinates of the first satellite
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! object2_nodes - coordinates of the second satellite

I <First_deriv> - calculates the derivative at the moment t

! <First_treshold> - determines the first moment t when the distance is equal to <distance>

! <Flag_1> - <First_treshold> was passed

I <Seconf_treshold>- determines the last moment t when the distance is equal to <distance>

! <Flag_2> - <Seconf_treshold> was passed

I <close_param> - 7 elements array;

I close_param(1) - passing moments for <First_treshold>

I close_param(2) - passing moments for <Dist_close>

I close_param(3) - magnitude of <Dist_close>

I close_param(4) - passing moments for <Second_treshold>

I close_param(5) - the current distance between the two objects

I close_param(6) - an angle between the objects' velocities vectors

I close_param(7) - magnitude of the relative velocity

1

FUNCTION  Sit__ 61(t,dt,objectl_adr,object2_adr,nodes,nodes_count,node_t_adr,adr_znam_nodes, &
distance,close_param,angle_v1v2, fl_rezults,duration,begin_sit,dt_sit,t12,id_debris)

logical  Sit__ 61, fl_rezults, begin_sit

integer objectl_adr,object2_adr, adr_znam_nodes

real distance,angle_v1v2,duration, t12*8(2,3)

real*8 t,dt, tt,close_param(5)

real*8 objectl_nodes(6,nodes),object2_nodes(6,nodes),node_t(nodes),node_znam(nodes)

logical flag,flag_1[save],flag_2[save]
real*8  derivative_1,derivative_2,Dist,t_dist,Dist_n,Dist_k,t_close,dist_close
real*8 vlv2_delta,delta_v1v2

AUTOMATIC flag,flag_1,flag_2,Dist_n,Dist_k,derivative_1,derivative_2,Dist_close,t_dist
POINTER(node_t_adr,node_t); POINTER(adr_znam_nodes,node_znam)
POINTER(objectl_adr,objectl nodes); POINTER(object2_adr,object2_nodes)

IF(nodes_count.LT.nodes) THEN
Sit__61=false.; RETURN
ENDIF

t=node_t(nodes - 1);
Dist_n=.0D0; Dist_k=.0D0
DO i=1,3
Dist_n= DIST_n + (objectl_nodes(i,nodes-1) - object2_nodes(i,nodes-1))**2
Dist_k= DIST_k + (objectl_nodes(i,nodes ) - object2_nodes(i,nodes ))**2
END DO; Dist_n= SQRT(Dist_n); Dist_k= SQRT(Dist_k); close_param(5)= Dist_k

derivative_1= First_deriv (node_t(nodes-1),nodes,node_t,objectl _nodes,object2_nodes,node_znam)
derivative_2= First_deriv (node_t(nodes ),nodes,node_t,objectl_nodes,object2_nodes,node_znam)
al: IF(derivative_1.LT..0DO.AND.derivative_2.LT..0D0) THEN ! Decreasing distance
flag_2= false.
bl: IF(Dist_n .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold
ELSEIF(Dist_n .LT. distance .AND. Dist_k .LT. distance) THEN ! The threshold is passed
ELSEIF(Dist_n .GT. distance .AND. Dist_k .LT. distance) THEN ! Passing the threshold
flag_1= Find_treshold(1, node_t,distance, t_dist, Dist_n,Dist_k,nodes,node_znam, &
objectl_nodes,object2_nodes)

close_param(1)=t_dist; flag_2=.true.
ENDIF bl
ELSEIF(derivative_1.GT..0D0.AND.derivative_2.GT..0D0) THEN ! Increasing distance
flag_1=.false.
b2: IF(Dist_n .GT. distance .AND. Dist_k .GT. distance) THEN ! There is no threshold

ELSEIF(Dist_n .LT. distance .AND. DlIst_k .LT. distance) THEN ! The threshold is not passed yet
ELSEIF(Dist_n .LT. distance .AND. Dist_k .GT. distance) THEN ! Ima prag
flag_2= Second_treshold(node_t,distance,t_dist,Dist_n,Dist_k,nodes,node_znam, &
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objectl_nodes,object2_nodes)
close_param(4)=t_dist; flag_2=.true.
ENDIF b2
ELSEIF(derivative_1.GE..0D0.AND.derivative_2.LE..ODO) THEN ! Local maximum
ELSEIF(derivative_1.LE..0DO.AND.derivative_2.GE..0D0) THEN ! Local minimum
Dist_close= Zero_deriv(node_t,nodes,t_close,objectl_nodes,object2_nodes,node_znam);
close_param(2)=t_close
close_param(3)= Dist_close; close_param(5)= Dist_close

delta_v1v2= Velosity_interp(t_close,nodes,node_t,objectl_nodes,object2_nodes,node_znam);

b3: IF(Dist_n.GT.distance.AND.Dist_close.LT.distance) THEN ! If the first threshold isn’t passed
flag_1= First_treshol (node_t(nodes-1),t_close,node_t,distance,t_dist,Dist_n,Dist_k,nodes, &
node_znam,objectl_nodes, object2_nodes)
close_param(1)=t_dist; flag_1=.true.
ENDIF b3

b4: IF(Dist_close.LT.distance. AND.Dist_k.GT.distance) THEN ! Ima prag v ostavashtata chast na stapkata
flag_2= Second_treshol (t_close,node_t(nodes),node_t,distance,t_dist,Dist_n,Dist_k,nodes, &
node_znam,objectl_nodes,object2_nodes)
close_param(4)=t_dist; flag_2=.true.
ENDIF b4
ENDIF al,
Sit__ 61=.true.
END FUNCTION Sit__ 61

! <First_deriv>- determines the first derivative in the moment <t>

FUNCTION First_deriv(t,nodes,node_t,  node_1, node_2, node_znam)
real*8 First_deriv
real*8 t,node_t(nodes), node_1(6,nodes),node_2(6,nodes),node_znam(nodes)
real*8 dt/.00001/, Dist1, Dist0, Lagrange_interp

AUTOMATIC Dist1,Dist0

Dist1= Lagrange_interp (t ,nodes, node_t,node_1,node_2,node_znam)
Dist0= Lagrange_interp (t-dt,nodes, node_t,node_1,node_2,node_znam);

First_deriv= (Distl - Dist0)/dt
END FUNCTION First_deriv

! First derivative - zero; minimum distance
1

FUNCTION Zero_deriv(node_t,nodes, t close, node_1, node_2, node_znam)
real*8 Zero_deriv
real*8 node_t(nodes),t_close, node_1(6,nodes),node_2(6,nodes),node_znam(nodes)

real*8  First_deriv, Lagrange_interp, t_1,t 2,tm, Dist_close
AUTOMATIC t_ 1t 2,tm,Dist_close

t_1=node_t(nodes-1); t 2=node_t(nodes); tm=t 1+ .5%(t 2-t 1)
derivative= First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);
DO WHILE(ABS(derivative).GT..00001.AND.(t_2-t_1).GE..00001);
IF(derivative.GT..0D0) THEN
t_2=tm
ELSEIF(derivative.LT..0D0) THEN
t_1=tm
ENDIF;tm=t 1+ 5%t 2-t 1)
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derivative=

END DO;

First_deriv(tm,nodes,node_t,node_1,node_2,node_znam);

Dist_close= Lagrange_interp (tm,nodes, node_t,node_1,node_2,node_znam);

Zero_deriv= Dist_close; t_close= tm
END FUNCTION  Zero_deriv

! <Find_treshold>- finds the start and end times of the “dangerous zone”
! <var>- var=1 - finds the first threshold
! var=2 - finds the second threshold

FUNCTION Find_treshold(var,tn,tk,node_t,distance,ts,Dist_n,Dist_k,nodes,node_znam, node_1, node_2)

logical Find_treshold
integer var
real

real*8

distance
tn,tk,node_t(nodes), ts,Dist_n,Dist_k, node_znam(1),node_1(1),node_2(1)

real*8 Disr_n,Disr_k,Dist_t,tt,t1,t2,Lagrange_interp,delta

real*8,parameter :: tol=.01
AUTOMATIC Disr_n,Disr_k

Dist_t,t1 t2,tt

t1=tn; t2= tk; Disr_n= Dist_n; Disr_k= Dist_k; Find_treshold=.false.;!var_12=2
tt=t1 + .5*(t2 - t1)
IF(var.EQ.1) THEN; delta= Disr_n - Disr_k
ELSE; delta= Disr_k - Disr_n

ENDIF
a: DO WHILE(delta.GT.tol)

Dist_t= Lagrange_interp(tt,nodes,node_t,node_1,node_2,node_znam)
IF(Dist_t.GT.distance) THEN

IF(var.EQ.1) TH

EN; Disr_n=Dist_t; t1=tt

ELSE; Disr_k= Dist_t; t2=tt

ENDIF

ELSEIF(Dist_t.LE.distance) THEN

EN; Disr_k= Dist_t; t2=tt

ELSE; Disr_n=Dist_t; t1=tt

t1)
EN; delta= Disr_n - Disr_k

ELSE; delta= Disr_k - Disr_n

IF(var.EQ.1) TH

ENDIF

ENDIF;

ts= tt; tt=t1 + .5*(t2 -
IF(var.EQ.1) TH

ENDIF

END DO a;

Find_tresh

old=.true.

END FUNCTION  Find_treshold

I <Lagrange_interp>- determines the minimal distance between two objects in a time moment <t>

Lagrange interpolation is applied

FUNCTION Lagrange_interp(t,nodes,node_t, node_s, node_d, node_znam)
real*8 Lagrange_interp
real*8 t, node_t(nodes),node_s(6,nodes),node_d(6,nodes),node_znam(nodes)

real*8 rt, numerator, Sx,
AUTOMATIC numerator, Sx,

Sy, Sz, Dx, Dy, Dz, coeff_Lagrange
Sy, Sz, Dx, Dy, Dz, coeff_Lagrange

Sx=0.D0; Sy= 0.D0; Sz= 0.D0; Dx= 0.D0; Dy= 0.D0; Dz= 0.DO; rt=t;

DO nd=1,nodes
numerator = 1.DO0;
DO md=1,nodes
IF(md.NE.nd) THEN
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numerator = numerator *(rt - node_t(md))
ENDIF
END DO;
coeff_Lagrange= numerator *node_znam(nd);
Sx= Sx + node_s(1,nd)*coeff_Lagrange; Dx= Dx + node_d(1,nd)*coeff_Lagrange
Sy= Sy + node_s(2,nd)*coeff_Lagrange; Dy= Dy + node_d(2,nd)*coeff_Lagrange
Sz= Sz + node_s(3,nd)*coeff_Lagrange; Dz= Dz + node_d(3,nd)*coeff_Lagrange
END DO;
Lagrange_interp= SQRT((Sx - Dx)**2 + (Sy - Dy)**2 + (Sz - Dz)**2);
END FUNCTION Lagrange_interp
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INPUMEHEHUE ITAPAJIJIEJIBHOI'O PEIIATEJIA
JJIS1 CUTYALHMOHHOI'O AHAJIN3A B 3AJAYAX CBJIMKEHUSA
HUCKYCCTBEHHBIX CIYTHHUKOB C IPYT'UMHU CIIYTHUKAMU
N C KOCMUMYECKUM MYCOPOM. AJIT'OPUTMBI 1
HOAIPOI'PAMMBI

Amanac Amanacoe

AHHOTALIMSA
I[lo wMepe yBenWUYeHHS  KOJIMYECTBA AKTHUBHBIX W  IACCHUBHBIX
WCKYCCTBEHHBIX  CIIyTHMKOB 3€MJIM  BO3pPAcTaeT  BEPOSITHOCTh  MPSMBIX
CTOJIKHOBEHHIA, KaK MEX]Ty Pa3IMYHBIMUA CITyTHUKAMU, TaK U MEX]y CITyTHUKaMHU 1
KOCMHUYECKHM MYCOpoM. AHanmu3 (PyHKIIMOHMPOBAHUS KOCMHYECKHUX CHCTEM BO
BPEMEHH JIOJDKCH YYUTBHIBATH BO3MOXKHOCTH TAaKMX COOBITHH, a TakKe MaHEBPBI,
BEITIONHSEMBIE JIJISi CHUKEHHS OTMACHOCTH IPSAMOTO CTOJIKHOBEeHHA. PaccMmoTpeHa
BO3MOXKHOCTbH HCITOJIE30BaHUS pa3pab0OTaHHOTO pelraTesi CUTyallHOHHOTO aHan3a
JUISL pereHus 3aaad COMU-)KEHHsI MHOTOCITYTHHUKOBBIX CHCTEM M KOCMHYECKOTO
Mycopa. DTOT pelIaTesb SBISETCS OJTHUM W3 BEIYHCIUTEIBHBIX CPEICTB, JICIKAITIX
B OCHOBE MEX-JIHCUUIUIMHAPHONH KOMIBIOTEPHON Cpeabl ISl MOJEIUPOBaHUS
KocMuuecknx ~ Muccuii.  OCHOBHOE  BHUMaHHE  YACISIECTCS  ONMUCAHHUIO

BBIYUCIIATEIHHBIX AITOPUTMOB U TIOJIITPOTPAMM.

29


http://space.bas.bg/SES/archive/SES%202023_DOKLADI/1_Space%20Physics/11_Atanassov.pdf
http://space.bas.bg/SES/archive/SES%202023_DOKLADI/1_Space%20Physics/11_Atanassov.pdf

