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Abstract 
In the presented paper, linearized and nonlinear mathematical models of three-dimensional 

motion of Douglas DC-8-63 transport aircraft are considered. A source code was developed in the 

GNU Octave environment by means of which serial computations were made for impulse deviations 

of elevator and ailerons. The results obtained from both the linearized and the non-linear model are 

shown graphically, compared, and commented. 

 

 
Introduction 
 

Airplane flight dynamics refers to carrying out a study of how airplanes 

move and maneuver in three-dimensional space, [1]. It involves understanding the 

forces and moments that act on an aircraft during flight, as well as the aerodynamic 

principles that govern the behavior of an aircraft in the air. It is all about trading off 

stability against control. By and large, stability refers to the tendency of an aircraft 

to return to a steady state after a disturbance ceases to act. Control refers to the 

pilot’s ability to maneuver the aircraft and maintain control. The aircraft design 

process comes with a trade-off between stability and control qualities. Overall, 

airplane flight dynamics is critical for ensuring the safety and efficiency of air 

travel. 

Previous research on the topic includes D. Scholtz’s noteworthy 

monography, [2] who investigated the flight dynamics of the Douglas DC-3 by 

means of both linearized and non-linear models. In addition, McLean [3] and 

Nelson [4] have developed linearized and non-linear models, including short 

numerical examples involving generic aircraft. 

The objectives of the presented paper are, firstly, to carry out numerical 

experiments with linearized and non-linear models of aircraft motion and, 

secondly, to compare the obtained results. Decoupled aircraft responses 

(longitudinal and lateral) are considered separately after applying a pulse control 
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input by elevator and ailerons. Inertial and aerodynamic coupling effects are not 

taken into consideration whatsoever. 

 

Fig. 1. Adopted body reference frame 

 

Governing equations 
 

Governing equations have been derived from theorems of linear and 

angular momentum conservation as follows: 
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where F = [X, Y, Z]
T
, M = [L, M, N]

T
 are vectors of externally applied 

forces/moments, v = [U, V, W]
T
, ω = [P, Q, R]

T
 stand for linear/angular velocity 

vectors, Fig. 1, m is rigid body mass (constant), I is inertia tensor describing mass 

distribution within the rigid body: 
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The body reference frame is solely considered. Positive signs of moments and 

angular velocities, forces, and linear velocities are shown in Fig. 1. 

Linearized model 
 

Linearized mathematical models of the nonlinear system (1) presented here 

have been borrowed from textbooks [3], [4], and a monograph [2]. System 

response is resolved by function [y,t,x] = lsim(sys,u,t) available in the 

Control package in GNU Octave. 
 

Longitudinal dynamics (state space) 
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Lateral dynamics (state space) 
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Non-linear model 
 

Non-linear equations of motion have been derived from system (1) by 

means of the SymPy package available in GNU Octave and the source code shown 

in Appendix 1. The equations are subsequently solved for the highest derivative of 

the state variables by means of the ode45 function. The function implements an 

explicit Runge-Kutta (order 4, 5) method with Dormand – Prince adaptive scheme. 

Given products of inertia Ixy = Iyz = 0, the obtained equations are as follows: 
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Alternatively, the scalar expansion of system (15) might be found in the textbook 

[5]. 

Gravity force vector is to be added to the aforementioned system according 

to 
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where θ is aircraft pitch, φ is roll angle, and g = 9.80665 m/s
2
 is standard gravity 

net acceleration. This, in turn, introduces the following additional relations as far as 

aircraft attitude is concerned: 
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Note, a singularity would arise should pitch angle θ = ± π/2 rad. A workaround 

would be to propagate quaternions from angular rates P, Q, R instead of Euler 

angles according to a recipe published in link [6]. 

Externally applied forces F and moments M are further calculated, taking 

into account dimensional stability and control derivatives. This approach is 

commonly known as Taylor series approximation. It is a representation of a 

function as an infinite sum of terms that are calculated from values of the 

function’s derivatives at a single point, a.k.a. equilibrium condition. 
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By using the first few terms of the Taylor series, a polynomial approximation could 

be created that is accurate near the equilibrium point. Values of the first partial 

derivatives, [7] at certain flight conditions are given in Appendix 2. Conversion to 

SI units has been carried out in advance. In equations above, subscripts denote the 

following deflections, in the current study case, in radians: δE elevator, δA aileron, 

δR rudder, δF flaps. Negative elevator trailing edge up gives positive nose-up pitch 

response. Negative right aileron up and left aileron down gives positive right wing 

down roll response, [8]. A shorthand notation is used here, for example, Xu = 

∂X/∂U and so on. 
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Results 
 

Initial conditions U0 = 74.2 m/s, mass m = 86104 kg, Mach number M = 

0.219, product of inertia Ixz = 37962.9 kg.m
2
, moments of inertia Ixx = 

4189477.460 kg.m
2
, Iyy = 3986104.768 kg.m

2
, Izz = 7565464.152 kg.m

2
 as well as 

values of dimensional stability and control derivatives are published in Appendix 2 

(imperial units). These values, available in paper [7], apply to Douglas DC-8-63 

aircraft. The following results were obtained for longitudinal and lateral aircraft 

responses after applying a pulse of elevator/aileron deflection of +0.02 rad, 

respectively, within 10 seconds. Overlaid charts in Figs. 2 and 3 show results 

obtained by means of both linearized and non-linear models. Both figures depict 

state vectors of longitudinal (3) and lateral (9) motions. In the chart caption, a 

ternary operator is used to describe the input pattern. In Fig. 4, the airplane's 

response to the same input is depicted in three-dimensional space. 

 

Fig. 2. Longitudinal motion, elevator δE = (t<10) ? 0.02 : 0 rad 
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Fig. 3. Lateral motion, aileron δA = (t<10) ? 0.02 : 0 rad 

 

Fig. 4. Airplane response, longitudinal (left) and lateral motion (both non-linear) 

 
Conclusion 
 

In case of longitudinal motion, no significant difference between linearized 

and non-linear models is observable. With regard to lateral motion, however, an 

approximation error is being accumulated. This might be accounted for by the poor 

accuracy of the proposed linearized model of aircraft lateral motion. 

Significant oscillations are noticeable at the beginning and end of the 

control input. Presumably, low values of corresponding damping derivatives might 

be pointed out as a cause. 
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Disclaimer 
 

The project source code might be downloaded from GitHub, [9]. The code 

runs on GNU Octave only (no MATLAB whatsoever). 
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Appendix 1. Source code in SymPy for deriving governing equations (15) 
 

clear; 

pkg load symbolic 

 

syms Ixx Ixz Iyy Izz 

I = [[Ixx,0,-Ixz];[0,Iyy,0];[-Ixz,0,Izz]]; 

 

syms P Q R L M N 

w = [P;Q;R]; Mo = [L;M;N]; 

 

wdot = simplify(inv(I)*(Mo - cross(w,I*w))); 

 

syms U V W m X Y Z 

v = [U;V;W]; Fo = [X;Y;Z]; 

 

vdot = simplify(Fo/m - cross(w,v)); 

 

 

Appendix 2. Data for Douglas DC-8-63, [7] 
 

Geometrical and inertial Longitudinal dimensional derivatives 

H, ft 

M, – 

m, slugs 

Ix, slug.ft
2
 

Iy, slug.ft
2
 

Iz, slug.ft
2
 

Ixz, slug.ft
2
 

U0, ft/sec 

W0, ft/sec 

δf, deg 

xcg/ĉ 

θ, deg 

0 

0.219 

5,900 

3,090,000 

2,940,000 

5,580,000 

28,000 

243.5 

0 

35 

0.15 

0 

Xu, sec
–1
 

Xw, sec
–1
 

Xδe, (ft/sec
2
)/rad 

Zu, 1/sec 

Zẇ, – 

Zw, 1/sec 

Zδe, (ft/sec
2
)/rad 

Mu, 1/(sec.ft) 

Mẇ, 1/ft 

Mw, 1/(sec.ft) 

Mq, 1/sec 

Mδe, 1/sec
2
 

–0.0291 

0.0629 

0 

-0.2506 

0 

-0.6277 

-10.19 

-7.7e-06 

-1.068e-03 

-0.0087 

-0.7924 

-1.35 

 

Lateral dimensional derivatives Lateral dimensional derivatives 

Nβ, 1/sec
2
 

Nv = Nβ/U0, 1/(sec.ft) 

Np, 1/sec 

Nr, 1/sec 

Nδa, 1/sec
2
 

Nδr, 1/sec
2
 

Yv, 1/sec 

Yβ, (ft/sec
2
)/rad 

0.763 

3.1e-03 

-0.1192 

-0.268 

-0.0496 

-0.39 

-0.1113 

-27.1 

Yδa, (ft/sec
2
)/rad 

Yδr, (ft/sec
2
)/rad 

Lβ, 1/sec
2
 

Lv = Lβ/U0, 1/(sec.ft) 

Lp, 1/sec 

Lr, 1/sec 

Lδa, 1/sec
2
 

Lδr, 1/sec
2
 

0 

5.79 

-1.335 

-5.48e-03 

-0.95 

0.612 

-0.726 

-0.1848 
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МОДЕЛ НА ДИНАМИКАТА НА ПОЛЕТА НА ГОЛЯМ 

ТРАНСПОРТЕН САМОЛЕТ 

 
К. Методиев 

 
Резюме 

В настоящата статия са разгледани линеаризиран и нелинеен 

математически модели на пространственото движение на транспортен 

самолет Douglas DC-8-63. Разработен е сорс код в среда GNU Octave, с 

помощта на който са направени серийни пресмятания за импулсни 

отклонения на кормилото за височина и елероните. Получените резултати 

както от линеаризирания, така и чрез нелинейния модел са показани в 

графичен вид, сверени и коментирани. 

 


