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Abstract

In the presented paper, linearized and nonlinear mathematical models of three-dimensional
motion of Douglas DC-8-63 transport aircraft are considered. A source code was developed in the
GNU Octave environment by means of which serial computations were made for impulse deviations
of elevator and ailerons. The results obtained from both the linearized and the non-linear model are
shown graphically, compared, and commented.

Introduction

Airplane flight dynamics refers to carrying out a study of how airplanes
move and maneuver in three-dimensional space, [1]. It involves understanding the
forces and moments that act on an aircraft during flight, as well as the aerodynamic
principles that govern the behavior of an aircraft in the air. It is all about trading off
stability against control. By and large, stability refers to the tendency of an aircraft
to return to a steady state after a disturbance ceases to act. Control refers to the
pilot’s ability to maneuver the aircraft and maintain control. The aircraft design
process comes with a trade-off between stability and control qualities. Overall,
airplane flight dynamics is critical for ensuring the safety and efficiency of air
travel.

Previous research on the topic includes D. Scholtz’s noteworthy
monography, [2] who investigated the flight dynamics of the Douglas DC-3 by
means of both linearized and non-linear models. In addition, McLean [3] and
Nelson [4] have developed linearized and non-linear models, including short
numerical examples involving generic aircraft.

The objectives of the presented paper are, firstly, to carry out numerical
experiments with linearized and non-linear models of aircraft motion and,
secondly, to compare the obtained results. Decoupled aircraft responses
(longitudinal and lateral) are considered separately after applying a pulse control
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input by elevator and ailerons. Inertial and aerodynamic coupling effects are not
taken into consideration whatsoever.

Fig. 1. Adopted body reference frame

Governing equations

Governing equations have been derived from theorems of linear and
angular momentum conservation as follows:

dv F
at m oY

1) do
—=1"M-oxlo)
dt

where F = [X, Y, Z]', M = [L, M, N]" are vectors of externally applied
forces/moments, v = [U, V, W]", ® = [P, Q, R]" stand for linear/angular velocity
vectors, Fig. 1, mis rigid body mass (constant), | is inertia tensor describing mass
distribution within the rigid body:

XX Xy xz
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The body reference frame is solely considered. Positive signs of moments and
angular velocities, forces, and linear velocities are shown in Fig. 1.

Linearized model
Linearized mathematical models of the nonlinear system (1) presented here

have been borrowed from textbooks [3], [4], and a monograph [2]. System
response is resolved by function [y, t,x] = lsim(sys,u, t) availablein the
Control package in GNU Octave.
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Lateral dynamics (state space)
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Non-linear model

Non-linear equations of motion have been derived from system (1) by
means of the SymPy package available in GNU Octave and the source code shown
in Appendix 1. The equations are subsequently solved for the highest derivative of
the state variables by means of the ode45 function. The function implements an
explicit Runge-Kutta (order 4, 5) method with Dormand — Prince adaptive scheme.
Given products of inertia Ixy = lyz = 0, the obtained equations are as follows:

U:ﬁ—QW+RV+g
m

\/'=1—RU+PW+Gy
m

WzE—PV+QU+Q
m

1 L (<1,,PQ+N+Q(1,P—1,R))+..
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Yy
1 Ly (<1,,PQ+N+Q(I,P-1,R))+..
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Alternatively, the scalar expansion of system (15) might be found in the textbook

[5].

to

(15 B

R.:

Gravity force vector is to be added to the aforementioned system according
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G ,=-gsind
(16) G ,=gcosdsing
G ,=g(cosfcosp-1)

where @ is aircraft pitch, ¢ is roll angle, and g = 9.80665 m/s? is standard gravity
net acceleration. This, in turn, introduces the following additional relations as far as
aircraft attitude is concerned:

0=Qcosp—Rsing
¢=P+Rtandcosp+Qtandsing

Note, a singularity would arise should pitch angle 6 = + #/2 rad. A workaround
would be to propagate quaternions from angular rates P, Q, R instead of Euler
angles according to a recipe published in link [6].

Externally applied forces F and moments M are further calculated, taking
into account dimensional stability and control derivatives. This approach is
commonly known as Taylor series approximation. It is a representation of a
function as an infinite sum of terms that are calculated from values of the
function’s derivatives at a single point, a.k.a. equilibrium condition.

(17)

= X, (Uy=U)+ X W + X ;. 6E + X ;- 6F
=YV +Y,,0A+Y,.0R

(18) =7, (Up-U)+ZW +Z, 5E +Z,.5F

SIN3[< 3|

L=1,(LV+L,P+LR+L,,6A+L,0R)
M=1,(MU+MW+MW+MQ+M,;5E+M,5F)
N=1,(NV+N_P+NR+N;,5A+N,5R)

By using the first few terms of the Taylor series, a polynomial approximation could
be created that is accurate near the equilibrium point. Values of the first partial
derivatives, [7] at certain flight conditions are given in Appendix 2. Conversion to
Sl units has been carried out in advance. In equations above, subscripts denote the
following deflections, in the current study case, in radians: oF elevator, 64 aileron,
OR rudder, JoF flaps. Negative elevator trailing edge up gives positive nose-up pitch
response. Negative right aileron up and left aileron down gives positive right wing
down roll response, [8]. A shorthand notation is used here, for example, Xu =
0X/0U and so on.
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Results

Initial conditions U0 = 74.2 m/s, mass m = 86104 kg, Mach number M =
0.219, product of inertia Ixz = 37962.9 kg.mz, moments of inertia Ixx =
4189477.460 kg.m?, lyy = 3986104.768 kg.m?, 12z = 7565464.152 kg.m* as well as
values of dimensional stability and control derivatives are published in Appendix 2
(imperial units). These values, available in paper [7], apply to Douglas DC-8-63
aircraft. The following results were obtained for longitudinal and lateral aircraft
responses after applying a pulse of elevator/aileron deflection of +0.02 rad,
respectively, within 10 seconds. Overlaid charts in Figs. 2 and 3 show results
obtained by means of both linearized and non-linear models. Both figures depict
state vectors of longitudinal (3) and lateral (9) motions. In the chart caption, a
ternary operator is used to describe the input pattern. In Fig. 4, the airplane's
response to the same input is depicted in three-dimensional space.
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Fig. 2. Longitudinal motion, elevator og = (t<10) ? 0.02 : 0 rad
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Fig. 4. Airplane response, longitudinal (left) and lateral motion (both non-linear)
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Fig. 3. Lateral motion, aileron o, = (t<10) ? 0.02 : 0 rad
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In case of longitudinal motion, no significant difference between linearized
and non-linear models is observable. With regard to lateral motion, however, an
approximation error is being accumulated. This might be accounted for by the poor
accuracy of the proposed linearized model of aircraft lateral motion.

Significant oscillations are noticeable at the beginning and end of the
control input. Presumably, low values of corresponding damping derivatives might
be pointed out as a cause.
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Disclaimer

The project source code might be downloaded from GitHub, [9]. The code
runs on GNU Octave only (no MATLAB whatsoever).
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Appendix 1. Source code in SymPy for deriving governing equations (15)

clear;
pkg load symbolic

syms Ixx Ixz Iyy Izz
I = [[Ixx,0,-Ixz];[0,Iyy,0];[-Ixz,0,Izz]];

syms P Q R L M N

w = [P;Q;R]; Mo = [L;M;N];

wdot = simplify(inv(I)* (Mo - cross(w,I*w)));
syms UV WmXY Z

v = [U;V;W]; Fo = [X;Y;Z2];

vdot = simplify(Fo/m - cross(w,v));

Appendix 2. Data for Douglas DC-8-63, [7]

-0.0291
0.0629

0
-0.2506
0
-0.6277
-10.19
-7.7e-06
-1.068e-03
-0.0087
-0.7924
-1.35

0

5.79
-1.335
-5.48e-03
-0.95
0.612
-0.726
-0.1848

Geometrical and inertial Longitudinal dimensional derivatives
H, ft 0 Xu, sec’?

M, - 0.219 Xw, sec

m, slugs 5,900 X8e, (ft/sec?)/rad

Ix, slug.ft’ 3,090,000 | Zu, 1/sec

Iy, slug.ft? 2,940,000 | zw, -

Iz, slug.ft2 5,580,000 | zw, 1/sec

Ixz, slug.ft? 28,000 z8e, (ft/sec?)/rad

U0, ft/sec 243.5 Mu, 1/ (sec.ft)

WO, ft/sec 0 Mw, 1/ft

5f, deg 35 Mw, 1/ (sec.ft)

xcg/¢& 0.15 Mg, 1/sec

6, deg 0 Mde, 1/sec’

Lateral dimensional derivatives Lateral dimensional derivatives
NB, 1/sec? 0.763 v8a, (ft/sec?)/rad

Nv = NR/U0, 1/ (sec.ft) 3.1e-03 | Y8r, (ft/sec?)/rad

Np, 1/sec -0.1192 | LB, 1/sec?

Nr, 1/sec -0.268 Lv = LB/UO0, 1/ (sec.ft)
Nda, 1/sec’ -0.0496 | Lp, 1/sec

N&r, 1/sec? -0.39 Lr, 1/sec

Yv, 1/sec -0.1113 | Lda, 1/sec®

YB3, (ft/sec?) /rad -27.1 Ldér, 1/sec?
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MOJEJI HA TMHAMUKATA HA IIOJIETA HA I'OJISIM
TPAHCIIOPTEH CAMOJIET

K. Memooues

Pe3rome

B mHacrosmara cTaTHs ca pasrieiaHu JIMHEAPH3WpPaH W HEJIWHEEH
MaTeMaTHYeCKH MOJIEIM Ha TPOCTPAHCTBEHOTO JBIDKEHHE HA TPaHCIOPTEH
camoner Douglas DC-8-63. Paspaboren e copc xom B cpema GNU Octave, ¢
MOMOIIITA Ha KOWTO ca HaNpaBeHW CEPUHHH TPECMATAHHS 3a HUMITYJICHH
OTKJIOHEHHS Ha KOPMHJIOTO 3a BHCOUYWHA W enepoHuTte. IlodgydeHuTe pe3ynraTw
KaKTO OT IIMHEeapu3WpaHWs, Taka W Ype3 HEIMHCHHHS MOJeN ca IOKAa3aHW B
rpaduyeH BUJ, CBEPEHH U KOMEHTHPAHH.
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