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Abstract

Advanced possibilities have emerged in recent years for semi-automatic crop type mapping
at the national level due to the availability of Sentinel-1 and -2 satellite data. In this study, 14 crop
type classes were mapped over Bulgaria using three bi-monthly composite image mosaics for 2019
generated in the Google Earth Engine (GEE) cloud computing platform. The overall accuracy, when
both Sentinel-1 and -2 mosaics were used, was 78%, while the accuracy was slightly less when only
Sentinel-2 data were used (75%). The accuracy was highest for “Cereals”, “Maize”, “Sunflower”,
“Winter rapeseed”, and “Rice” — over 80% for both user’s and producer’s. However, the accuracy
for classes such as “Vegetables”, “Technical crops”, “Forage crops”, “Fallow”, etc. was low.
These classes represent categories suitable for agricultural practice and statistics, but are too
general and difficult to distinguish using satellite data. It was also found that accuracy tends to be
higher for larger parcels. Using composites with higher frequency and adapting the legend classes to
include only crops similar in phenology and morphology are suggested as possible ways forward.

Introduction

The potential of Sentinel-2 for crop type mapping has been demonstrated in
recent years by numerous studies. The high temporal resolution (5 days when both
Sentinel-2 A and B satellites are used) is one of the key characteristics of the
Sentinel-2 imagery, which makes it particularly useful for crop mapping because it
provides multiple snapshots of crop development during the growing season. These
benefits are clearly demonstrated by the multi-date approach, where (all) available
cloud-free images during the season are used for classification, e.g. [1, 2]. While
this approach is relevant for relatively small study areas, national scale or large
area applications, e.g. [3-5], should deal with images from different orbits (thus
different date), large volumes of data, and the cloud cover. Cloud storage and
computing facilities, such as Google Earth Engine (GEE) [6] facilitate significantly
such applications. Additionally, Sentinel-1 Synthetic Aperture Radar (SAR) data
have also been used to map crop types [7, 8]. Van Tricht et al. [3] found that
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combining radar and optical data for crop classification led to increasing
classification accuracies compared to optical-only classification.

A previous case study from Bulgaria [9] demonstrated the utility of Sentinel-
2 imagery for crop type mapping in small regions using selected cloud-free scenes.
The authors suggested that future studies should address the problems related to
mapping at national scale and also to integrate Sentinel-1 data in the classification
in an attempt to increase the accuracy. This study, therefore, tries to build on past
results and its aim is to produce and evaluate a national scale crop type map of
Bulgaria based on Sentinel-1 and Sentinel-2 imagery. The results are also
compared with those obtained using only Sentinel-2 imagery. Finally, the map
accuracy is analysed with respect to the field size.

Data and methods

The CORINE Land Cover (CLC) 2018 dataset is used to define the area of
interest, which includes only agricultural areas. Thus, only the regions with code
200 according to the CLC level 1 are further considered for the image
classification.

Based on the agroclimatic zoning of Bulgaria [10] the country is divided into
four agroclimatic regions: 1. cool and moderately cool, wet region (mountain
areas); 2. Moderately warm and warm region, less liable to droughts (most of the
Danube plain and the basins and low mountain parts in southern Bulgaria); 3.
moderately hot and hot region, liable to droughts (the northernmost part of the
Danube plain, the Upper Thracian lowland, and lowland of Burgas); and 4. Hot,
arid region (the lower part of Struma valley). The data pre-processing and
classification are repeated for each region and the final crop map is obtained after
merging the maps of the individual regions.

Data about parcel borders and the crop sown in each parcel in 2018/2019
agricultural year are available in a vector format from State Fund “Agriculture”
(SFA). The data are based on declarations made by farmers who apply for aid
under Common Agricultural Policy (CAP) and national programmes and have
complete coverage of the country’s agricultural area. These data are collected as
part of the Integrated Administration and Control System (IACS). A special
nomenclature of crops is used in this dataset, which, at the lowest level, includes
more than 200 crops, which are aggregated in groups (e.g. technical crops) and
subgroups (e.g. industrial crops, oil crops, etc.) at the higher levels. For this study,
the crops were aggregated in a customised legend, including some important
individual crops and some wider classes based on the groups and subgroups of the
original nomenclature. The 14 classes are as follows: “Cereals”, “Maize”, “Grain
legumes”, “Technical crops”, “Sunflower”, “Winter rapeseed”, “Forage crops”,
“Meadows and pastures”, “Alfalfa”, “Vegetables”, “Fallow”, “Vineyards and
orchards”, “Perennial medical and aromatic crops”, and “Rice”. The legend is
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constructed to be maximally close to the nomenclature used by the state authorities
in the agricultural sector. Fig. 1 presents the major stages in the phenological cycle
of some crops and crop types. The parcels are divided by random in two parts: for
training and for the validation of the classification algorithm (70:30), and are
converted to raster format.
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Fig. 1. Crop calendar of some crops and crop types in Bulgaria for 2019

The next steps, including satellite image pre-processing, training of the
classifier, and classification, are performed in Google Earth Engine (GEE). The
following GEE collections are used: “COPERNICUS/S2” consisting of Sentinel-2
A&B scenes at level 1C, and “COPERNICUS/S1_GRD” consisting of Sentinel-1
Ground Range Detected (GRD) scenes. The pre-processing steps for the Sentinel-2
imagery include 1. Selection of scenes with cloud cover lower than 20%; 2.
Applying the cloud and cirrus masks, which are part of the dataset (band QA60); 3.
Generating three multiband temporal composite images using the median
compositing rule, each containing bands B02-B08, B11, and B12: March-April,
June-July, and August-September 2019. The pre-processing steps for the Sentinel-1
imagery include 1. Filter the scenes by orbit type and selecting only “ascending”
imagery; 2. Clipping the edge of the scenes to remove bad pixels (an inland
buffer); 3. Apply a function (provided by Kristof Van Tricht, VITO) to make sure
all acquisitions in one pixel result from the same relative orbit; 4. Generating three
multiband temporal composite images using the median compositing rule, each
containing VV and VH polarisations: March-April, June-July, and August-
September 2019. Note that May is omitted from the compositing periods due to the
frequent cloud cover this month. Two datasets were constructed from the imagery.
The first has 27 bands and includes the Sentinal-2 composites. The second has 33
bands and includes both Sentinal-2 and Sentinel-1 composites.
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The Random Forest (RF) classification algorithm [11, 12] as implemented in
GEE is used to classify the satellite image datasets. The raster with the parcels
designated for training is imported in GEE and a stratified random sampling is
performed with 1000 pixels per class (note that in some of the agroclimatic regions
this number cannot be attained for some classes, which have limited distribution).
The values of the image bands are extracted for each training pixel. These data are
then used to train the RF classifier. The number of trees is set up to 100, which is
considered good compromise between accuracy and computational time [13]. All
other parameter values are left by default. The final map is exported from GEE in
GeoTiff format with 10 m pixel size.

The final crop map obtained after the four agroclimatic regions have been
merged is “smoothed” by eliminating patches smaller than 10 pixels. This is
performed using the Sieve tool of QGIS. Accuracy assessment is also performed in
QGIS. For that purpose, the raster with the parcels designated for validation and
the crop map raster are compared pixel by pixel and a confusion matrix is
generated. Over 100 million pixels are used for this validation. Overall accuracy
and class-wise accuracies (User’s and Producer’s) are calculated. Additionally, We
repeated the same validation procedure several times but using only parcels with
specific size: less than 0.5 ha, 0.5-1ha, 1-3 ha, 3-5 ha, and over 5ha.

Results and discussion

The overall accuracy of the map based solely on Sentinel-2 data is 74.8%,
while the overall accuracy of the map based on a combination of Sentinel-1 and -2
data is 78.1%. This confirms the added value of SAR data in crop type mapping.
All results and discussions further on concern the map based on the combination of
Sentinel-1 and -2 data which is shown in Fig. 2. A visual examination of the map
shows that the agricultural land use pattern is well portrayed in most of the territory
where large parcel sizes dominate. For example, Fig. 3A shows a map excerpt
representing a small area near the town of Knezha in the Danube plain. Here,
parcel borders and shapes are realistically represented and within-field
heterogeneities caused by errors in the classification are rate. More importantly, in
most parcels the crop type is accurately determined by the RF classifier if we
compare it with the [ACS dataset used in this study as a reference. In other parts of
the country, however, the classification results are characterised with much noise.
A typical example is to be found in the Upper Thracian lowland near Plovdiv,
where parcel sizes are much smaller (Fig. 3B). The post-processing (i.e. the
smoothing with the “sieve” tool) reduces noise but due to small parcel size, it
resulted in disturbance of the parcels’ shape. Also, compliance with the IACS
dataset is poorer.

The performance is not constant among classes and the accuracy varies for
the different crop types. Both user’s and producer’s accuracy are above 80% for the
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classes “Cereals”, “Maize”, “Sunflower”, “Winter rapeseed”, and “Rice” (Fig. 4).
Cereals, (which include mostly winter wheat and winter barley), maize, and
sunflower represent the most important crops in the country in terms of area. Rice
is particularly well classified, which is due to its specific method of cultivation.
The class “Meadows and pastures” is mapped with moderate accuracy (70% and
75% for producer’s and user’s accuracy respectively; Fig. 4). The accuracy for the
other classes is lower. In particular, their user’s accuracies are low, which indicates
that their occurrence is overestimated. For example, most of the pixels belonging to
class “Vegetables” in the map are actually other crop types. The classes for which
the RF classification has low accuracy are rare classes, which mean they represent
a small part of the arable land in Bulgaria. This can be seen in the area distribution
shown in Fig. 5.

The most important misclassifications are as follows: 1. “Alfalfa” is
overestimated at the expense of “Cereals” and ‘“Meadows and pastures”; 2.
“Technical crops” and “Grain legumes” are overestimated at the expense of
“Sunflower” and “Cereals”; 3. “Forage crops” is overestimated at the expense of
“Maize” and “Cereals”; 4. “Vegetables” is overestimated at the expense of
“Sunflower” and “Fallow”; 5. “Vineyards and orchards” is overestimated at the
expense of “Meadows and pastures”; 6. ‘“Perennial medical and aromatic crops”
and “Fallow” are mixed with many of the other classes. Most of the mixtures are
with “Cereals”, “Sunflower”, and “Maize”, which can partially be explained by the
fact that these are the most widespread classes. The similarity of classes in terms of
crop phenology and/or physiognomy also plays a part. For example, “Alfalfa” is
mixed with “Meadows and pastures”, both classes representing low herbaceous
plants with continuous cover and similar phenological cycle (Fig. 1). Another
reason for the errors in the classification is that some classes are too general and
include crops which are not similar in their spectral characteristics but in their
usage. For example, the “Forage crops” class includes, among others, crops as
different as clover and corn for silage. This can partly explain the mixture with the
“Maize” class. Fig. 6 shows the overall accuracy calculated for different parcel
sizes. As the visual inspection of the map suggested the parcel size is related to the
accuracy. The accuracy increased from below 60% for the smallest parcels to over
80% for those larger than 5 ha. While the smallest parcels (<0.5 ha) are the most
numerous, they account for only 3% of the area of all parcels designated for
validation. The largest parcel category (> 5 ha) constitutes by far the largest area
(76 %). These results can be explained with the fact that smaller fields have more
border pixels, which represent a mixture of land uses.

The application of the national crop map based on Sentinel data could be the
calculation of areas of different crops for statistical purposes. To check the
accuracy of the calculated areas they are compared with the areas from the IACS
dataset (Fig. 5). To guarantee that the areas are comparable the Sentinel-based crop
map is clipped to the extent of the IACS dataset. In general, the magnitude of the
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class area differences is well reproduced using the Sentinel-based map. For
example, “Meadows and pastures” has roughly half the area of “Sunflower”
according to both datasets. However, the area of the three largest classes is
somewhat underestimated with the Sentinel-based map data (the difference with
IACS areas is 11-14%). The small-area classes are, as a rule, overestimated, this
being the most severe for “Vineyards and orchards”, “Vegetables”, “Grain
legumes”, and “Forage crops” where the difference from IACS data is more than
100%. The most accurate are the areas of “Winter rapeseed” and “Rice”, which are
within 3% and 9% of the IACS data, respectively.

The accuracy of the Sentinel derived crop maps reported in the literature
vary depending on the input data, methods and study area specifics. Very high
accuracy (95-96%) was reported for example by Vuolo et al. [1], but they used a
large number of cloud-free Sentinel-2 images, instead of composites, and mapped
small region. In a study, similar to this presented here, Griffiths et al. [4] mapped
12 crop and land cover classes over Germany with 81% overall accuracy. In
another national scale exercise Van Tricht et al. [3] classified dense time series of
Sentinel-2 NDVI and Sentinel-1 backscatter data to map 12 crops and land cover
types in Belgium, achieving overall accuracy of 82%. These results are similar to
the accuracy reported here.

—— = Technical crops Meadovs and pastures = Vineyands and orchands
— Mabe e Sunflower  Alfalfa m Ferenial medical and aromatic crops
Grain legumes = Winter rapeseed e Vegetables == Fice

= Forage crops e Fallow

Fig. 2. Crop type map of Bulgaria for 2018/2019 agricultural year derived from Sentinel-1
and -2 data. White areas are non-agricultural land
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The two-month compositing interval used in this study is relatively long to
allow fine phenological differences between crops and be captured (Fig. 1).
However, it ensured cloud-free Sentinel-2 mosaics over the entire study area with a
negligible cloud contamination according to the visual inspection. Other studies
have successfully applied shorter compositing periods for Sentinel-2, e.g. 10-day or
month, but this may require smoothing and gap-filling the time series or even
ingestion of Landsat observations [4, 5]. Griffiths et al. [4] showed that using 10-
day composites resulted in higher accuracy for most classes than longer
compositing periods. These developments may increase mapping accuracy in the
Bulgarian context as well and should be examined in future studies.

Sentinel crop map IACS dataset

o 2 km
—— w== Technical crops © Meadows and pastures === Vineyards and archards et
I — e Sunflower w— Alfalfa = Perennial medical and aromatic crops
Gﬂm—wmtermp&seed—wgembl&s - Rice

e Forage crops s Fallow
Fig. 3. Comparison of the crop type map of Bulgaria for 2019 derived from Sentinel-1

and -2 data with the IACS dataset for selected regions: (4) Danube plain near Knezha and
(B) Upper Thracian lowland near Plovdiv
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crop map and the IACS dataset
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Conclusions

This study is, to our knowledge, the first attempt to map crop types over the
entire Bulgarian territory using Sentinel satellite imagery. A moderate overall
accuracy of 78% is achieved, but results are better for the most important crops and
crop types — “Cereals”, “Sunflower”, and “Maize”. Problem for the classification is
the recognition of some classes, which are too heterogeneous, e.g. “Vegetables”
and “Forage crops”. Such classes are included in the legend to comply with the
existing nomenclature of crops used in the country, but the poor accuracy suggests
that their usage is impossible in the context of the semi-automated remote sensing-
based mapping. Higher overall accuracy was achieved with a combination of
Sentinel-1 and -2 data than using only optical imagery. This confirms that SAR
data derive important information for crop discrimination. It was also found that
accuracy tends to be higher for larger parcels. Future studies should concentrate on
the adjustment of the definitions of the classes. Mapping only individual crops,
instead of groups of crops, is another approach but this would require a more
computational resources. Further improvement of results may require testing of
other classification algorithms and/or using composites with higher frequency.
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KAPTOI'PA®UPAHE HA 3EMEJIEJICKHUTE KYJITYPHU B BBJII'APUSA
YPE3 JAHHMU OT SENTINEL-1/2

II. lumumpos, JI. ®unues, E. Pymenuna, I. Kenee

Pesrome

[Ipe3 nocneguute roguHu, OarogapeHue Ha JOCTHIA JO CATEIUTHH AaHHU
ot Sentinel-1 u -2, ce MOsSBUXa HOBU BH3MOXKHOCTH 32 MOJyaBTOMAaTHYHO KapTo-
rpadupaHe Ha 3eMEEeJICKUTE KyITypH Ha HallMOHAJIHO HUBO. B ToBa m3cnenBaHe
ca kaprorpadupanu 14 3eMenencku KyJITypH U TPYIU OT KyJITYpPH Ha TEPUTOPHUSITA
Ha Bwirapus msnon3Baiiku Tpu JByMECeUHH KOMIIO3UTHH M300paxxeHus 3a 2019
roguHa, reHepupann B oOmauHara matdgopma Google Earth Engine (GEE).
OO6maTa TOYHOCT, KOTAaTo Ce M3MOI3BAT M300pakeHHs KakTo oT Sentinel-1, Taka u
ot Sentinel-2 ¢ 78%, mOKaTo TOYHOCTTA € MAaJIKO ITO-HKMCKA, KOraTo Ce M3IOJI3BAT
camo naHHu ot Sentinel-2 (75%). TouHocTTa € Hal-BHCOKa 3a KIIACOBETE
“3ppHeHO-)kUTHU KyaTypu’, “LlapeBuna”, “CapHuornen’, ‘“3umHa panuua” U
“Opus” — Hax 80%. TounoctTa mpu knacoBe kato “3eneHuynu’”’, “TexHHMYECKU
Kyntypu”, “@ypaxnu kyntypu’, “Yrap” u ap. obdadye e mo-HucCKa. Te3n KiacoBe
MPECTaBISIBAT KATETOPHUH, MMOAXOSIIN 3a U3II0J3BaHE B 3eMeelIcKaTa NpaKkTHKa
U CTaTHCTHKA, HO ca TBBbpAE OOIIM M TPYAHM 3a OTIMYABAHE UYpE3 CATEIUTHH
nanHu. bemie ycTaHOBEHO ChIIO Taka, Y€ TOYHOCTTA € MO-BUCOKA 3a MapIleNuTe C
no-rojieMu pazmepu. Kato B3MOXHHM IIBTHIIA 32 TOZOOPSIBAHE HA PE3YJITATUTE Ca
MOCOYEHHU H3IOJI3BAHETO Ha CEpUsl OT KOMIIO3UTHU H300pa’keHHs C MO-ToJisiMa
4YecToTa W aIalTHPAHETO Ha KJIacoBeTe OT KiacH(UKAIlMOHHATA CUCTEMa, Taka 4e
Jla BKITIOYBAT KYJITYPH, KOUTO ca CXOJIHH 10 ()eHOIOTHSI © MOP(OIOTHSI.
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