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Abstract 
In the paper hereby, an incompressible irrotational steady flow across a submerged body 

with finite dimensions will be studied. For this purpose, it is necessary to solve Laplace’s differential 

equation about a potential function in order to obtain the conservative velocity vector field. A general 

solution to the problem utilizing the Green identity implies the double layer potential function at an 

arbitrary point not belonging to the boundary surface. The potential is expressed by source/sink and 

doublet singularities distributed over the body surface and a wake attached to the trailing edge. The 

wake ensures that the Kutta condition is fulfilled. The submerged body geometry is approximated 

further by quadrilateral panels in order to compute the surface integrals for each panel exactly. To 

form a linear non-homogenous algebraic system, it is essentially to compute each panel influence to a 

collocation point of interest. The obtained coefficient matrix is diagonally dominant. The system is 

solved iteratively by means of the Gauss-Seidel method. 

The goal is development of a non-proprietary source code in order to work out a solution to 

the stated problem. The developed source code is authentic. Auxiliary libraries have not been used. 

Validation case and numerical results are depicted and discussed in the paper. 

 

 
 1. Introduction 
 

The proposed approach towards working out a solution to the stated fluid 

problem utilizes the so-called double layer potential method applied to the 

Laplace’s equation. In this study case, the flow is assumed irrotational and 

incompressible. This is a relatively old method which has been thoroughly studied 

and many solution codes have been developed as well. Nevertheless, one 

advantage of the method provokes development of the current study case: the 

method is fast and applicable to complex geometries of thick bodies generating lift. 

What is more, by solving the Laplace’s equation the velocity vector field might be 

found out prior to using equations of motion, such as Euler or Navier-Stokes. 

The presented study emphasizes on applicability of iterative schemes for 

working out a solution to a non-homogenous linear algebraic system relevant to the 
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stated fluid problem. In addition, authentic source code development in C is yet 

another project goal. To achieve it, Katz and Plotkin’s textbook, [1], was 

extensively used by the author as a guide throughout the presented study case. 

 

 
 

Fig. 1. Wing and a wake shed by the trailing edge. Lower right corner: the wake panel 

strength computation. 

 
 2. Problem statement and solution 
 

For an incompressible irrotational flow the continuity equation 
 

(1) 0 u , 
 

takes the form: 
 

(2) 
2 0   , 

 

where and Φ is potential function of a conservative velocity field u = gradΦ. The 

boundary condition at surface of a submerged body implies that normal velocity 

component vanishes: 
 

(3) . 0 n . 
 

The potential vector gradΦ is measured in body frame of reference. In 

addition, a disturbance created by the body decays at infinity r→∞, i.e. 
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(4)  lim 0
r




  , 

 

where gradΦ∞ is a vector due to the far field potential. A general solution to the 

problem stated by formulae 1–4, might be worked out considering the Green 

identity. In this way, the potential function at an arbitrary point P not belonging to 

the boundary surface is computed by 
 

(5)     
1 1 1 1 1

. .
4 4

Body Wake

P dS dS P
r r r

  
 



        
               

        
 n n , 

 

where σ (source/sink) and μ (doublet) are flow singularities strengths, r is distance 

from point P to the surface (body, wake, etc.). The surface integrals are taken over 

the body and a wake model, Fig. 1. The wake is assumed to be thin, so that the dot 

product n.gradΦ is continuous across it. This means that the wake cannot support 

fluid-dynamic loads, [1, p. 46]. In order to find the potential function Φ, a unique 

combination of sources and doublets distribution on the surface must be known in 

advance, [1, p. 47]. The solution (5) is also denoted as a double layer potential. The 

integral is computed over a double-sided surface and the normal vector n points 

inwards. According to Lamb, [2, p. 40], the impermeability condition (3) results in 

a constant inner potential 
 

(6) . 0 i const  n = , 
 

which implies that the current lines are not allowed to enter or leave the inner 

region – nor they are contained within. If the above equality holds, there can be no 

fluid motion inside the body. Assuming that the inner potential can be set to Φi = 

Φ∞ = const, equation (5) might be rewritten as follows: 
 

(7) 
1 1 1 1 1

. . 0
4 4

Body Wake

dS dS
r r r

  
 

        
             

        
 n n . 

 

A numerical solution to equation (7) is worked out in the current study. 

The boundary conditions (BCs) might either determine the zero normal 

velocity component (direct, Neumann BCs, also (3)) or specify the velocity 

potential itself (indirect, Dirichlet BCs) at the boundary surface. Equation (7) 

interprets the Dirichlet’s boundary condition. In addition, it is customary to assign 

following quantity to the source strength: 
 

(8)  linear free stream     n V Ω r V , 

 

where Vlinear is body linear velocity, Ω is body angular velocity, and Vfree stream is the 

free stream velocity. 
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Further problem refinement is required to describe flow over a thick body 

with sharp trailing edge generating a lift. In order to hold the rear stagnation point 

at the trailing edge, sufficient amount of circulation must be created while the body 

is moving through the fluid. This statement is yet another interpretation of the 

Kutta condition implying that a jump in the velocity potential exists in the vicinity 

of the trailing edge and the velocity there is finite. 

The wake strength at the trailing edge is determined by setting to zero the 

vortex element strength located at the trailing edge. Then, the vortex distribution 

might be regained by an equivalent doublet distribution, [1, p. 250] 
 

(9) 
. . 0T E    , 

 

which condition is fulfilled if 
 

(10) 
. . ,T E W W U Lconst        , 

 

where indices W, U, L denote wake, upper, and lower surface respectively, Fig. 1. 

The computational algorithm might also be seen in Fig. 1. The influence of 

singularities distributed onto the body and the wake is computed for each 

collocation point, which is placed at the panel centroid. In the example depicted in 

Fig. 1, the collocation point is placed at panel I = 7, j = 6 and the influence panel is 

I = 5, j = 4. For each collocation, point equation (7) might be written as follows: 
 

(11)      
1 1 1

1 1 1 1 1 1
. . 0

4 4 4

WNN N

k l kBody Wake Body

dS dS dS
r r r

  
    

     
         
     

    n n , 

 

where singularities μ and σ accept unit constant strength. The summation is 

evaluated for all panels discretizing the body and the wake. To abbreviate the 

amount of writing further, following symbols are adopted: for a doublet panel 
 

(12) 1 1
.

4
Panel

dS C
r

 
  
 

 n  

 

and for a source element 
 

(13) 
1 1

4
Panel

dS B
r

 
  

 
 . 

 

The integrals in (12) and (13) solely depend on the panel geometry. Having 

computed all panel influences onto all collocation points, the following non-

homogenous linear algebraic system is obtained: 

(14) 
1 1 1

0
WakeNN N

k k w w k k

k w k

C C B  
  

     , 
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where the source strength σ is known at this stage, (8). Equation (14) can be 

simplified further by computing the wake doublet in terms of the unknown surface 

doublet, Fig. 1, (also see (10)): 
 

(15) 
W U L     . 

 

Then, the influence coefficient takes the form: 
 

(16)  W W W U LC C     . 
 

Therefore, the first two additives in (14) might be grouped which yields the 

following expression: 
 

(17) 
1 1

N N

k k k k

k k

A B 
 

   , 

 

where the influence coefficient is computed depending on whether the influence 

panel is at the trailing edge or not: 
 

(18) k k

k k w

A C panel is not at trailing edge

A C C panel is at trailing edge



 
 

 

The expanded form of system (17) is as follows: 
 

(19) 
11 1 1 11 1 1

1 1

N N

N NN N N NN N

a a b b

a a b b

 

 

 

L L

M M M M M M M M

L L

  , 

 

where coefficients aij and bij are computed according to generic formulae (12) and 

(13). For particular case of quadrilateral source and doublet with constant strength, 

formulae derived by Hess and Smith, [3], are used: 

 Source 
 

(20) 

     
ln

1

4
atan atan

a b a a b a a b ab

ab a b ab

edges ab a a ab b b

a b

x x y y y y x x r r d

d r r d
b

m e h m e h
z

zr zr



       
 

  
   

                 

  

 Doublet 
 

(21) 
1

atan atan
4

ab a a ab b b

edges a b

m e h m e h
a

zr zr

     
     

     
  . 
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In the equation above, following abbreviations are used: 
 

(22) 

       

    

2 2 2 2 2

2 2, ,

,

ab b a b a i i i

b a
ab i i i i i

b a

d x x y y r x x y y z

y y
m e x x z h x x y y

x x

i a b

        


      





 

 

where x, y, and z are collocation point coordinates and xa, ya, za, xb, yb, and zb are 

panel corner points coordinates, indices a and b denote panel corner points 

belonging to a same panel edge. All quantities are computed in local (panel) 

coordinate system, Fig. 3. Hence, preliminary coordinate transformations must be 

made. 

After computing the influence coefficients, a non-homogenous linear 

algebraic system is obtained in terms of doublet μ distribution on the wing surface. 

The system is said to be strictly diagonal dominant if following requirement is met: 

(23) 




n

ij
j

ijii aa
1

 . 

In other words, the absolute value of each main diagonal element must be greater 

than sum of absolute values of the remaining elements in the current row 

respectively. 

If the requirement (23) is met, then the following stationary iterative 

method 

(24) 
1

1

1 1

1
1,2, , 1,2,3,

i n
k k k

i ii ij j ij j

j j iii

x b a x a x i n k
a




  

 
     

 
  K K  

for solving system (17) is said to converge unconditionally. Method (24) is named 

after Gauss and Seidel. The formula (24) is a modification of the widely known 

Jacobi method: 

(25) 1

1

1
1,2, , 1,2,3,

n
k k

i ii ij j

jii
j i

x b a x i n k
a






 
    
 
 
 

 K K 

The convergence criterion used in the algorithm is the relative difference 
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(26) 1 3max 10k k k  x x x . 

Both iterative schemes (24) and (25) require initial guess for the vector x. 

 
#ifndef DEFS_H 

#define DEFS_H 

 

#define PI 4. * atan(1.) 

#define I 20 // number of panels 

#define J 80 // number of panels 

#define IX(i, j) (i) * J + j // double indexing notation for one-dim array 

#define Om {0., 0., 0.} // wing angular velocity, s^-1 

#define Vl {0., 0., 0.} // wing linear velocity, m/s 

#define Ve {1., 0., 0.0875} // free stream velocity, m/s 

 

typedef double real; 

 

typedef struct _panel { 

        real *x_, *y_, *z_; // corner points in panel coordinates, [4] 

each 

        real *x, *y, *z; // corner points in global coordinates, [4] each 

        real *n, *b, *t, S, *p; // normal[3], binormal[3], tangent[3], … 

        real *Va; // apparent velocity 

        real dsig, dmu; // solution goes here 

        real cp; // static pressure coefficient 

} myPanel; 

 

int geom(myPanel *foo, char *type); 

int paraView(real *x, real *y, real *z, real *scalars0, real *vec0, real 

             *vec1, real *vec2, char *fileName); 

myPanel* createPanels(int N); 

int deletePanels(myPanel *foo, int N); 

real influenceDueToSource(myPanel *foo, real x, real y, real z); 

real influenceDueToDoublet(myPanel *foo, real x, real y, real z); 

real* solveLS_GS(int N, real *a, real *b); 

int do_forces(myPanel *foo); 

 

#endif // DEFS_H 

 

Fig. 2. Source code header file 

 
In Fig. 2, the source header file is shown. Each panel is represented by a 

structure _panel containing panel geometry, apparent velocity (8), and a few 

solution quantities, namely singularities strengths and static pressure coefficient. 

The panel geometry includes corner points coordinates expressed in both global 

and local (panel) coordinate system. The latter is formed by normal, tangent, and 

binormal unit vectors as it are shown in Fig. 3 in case of circular cylinder.  

In addition, the header contains following function prototypes. Function 

“createPanels” allocates memory for specified number of panels and pointers inside 

the structure. It returns a pointer to first panel inside the so formed one-dimensional 

array of structures. Function “deletePanels” does the opposite. Function “geom” 
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calculates all necessary geometric parameters relevant to each panel. The 

remaining function prototypes are self-explanatory and easily understandable. The 

functions “influenceDueToSource” and “influenceDueToDoublet” compute 

influences due to singularities at an arbitrary collocation point. The function 

“solve_GS” solves a linear algebraic system (17) iteratively. It returns a pointer to 

a solution vector allocated within the function body. What does function 

“paraView” is arranging the results to meet the “vtk” file requirements [4] and 

storing them onto the hard drive so that the user can visualize the results by means 

of a third-party viewer. One dimensional arrays are solely used in the code and 

accessed by a two-dimensional macro IX(i, j), Fig. 2. 
 

 
 

Fig. 3. Local coordinate system for each panel, black – normal, red – tangent,  

and blue – binormal stored at panel’s centroid 

 
 3. Results 
 

A circular cylinder has been used to validate the developed source code. 

The static pressure coefficient distribution is visible in Fig. 4. Both front and rear 

stagnation areas are clearly visible. 
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Fig. 4. Static pressure coefficient distribution over a cylinder, α = 0 deg, 40 × 80 panels 

 

 
 

Fig. 5. Matrix A (eq. 17) upper left corner 

 
Serial computations were also made by means of a finite span wing with 

airfoil NACA2412 at different angles of attack. Static pressure coefficient 

distribution is shown in Fig. 6 and Fig. 7. 
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Fig. 6. Static pressure coefficient distribution over a NACA2412 wing, α = 0 deg, 

20 × 80 panels 

 

 
 

Fig. 7. Static pressure coefficient distribution over a NACA2412 wing, α = 10 deg, 

20 × 80 panels 
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 4. Discussion 
 

The obtained static pressure coefficient distribution over a circular cylinder 

surface fully agrees with what Katz and Plotkin, [1, p. 69], discuss in their 

textbook. The static pressure coefficient varies within 1 and –3, so does the same 

quantity which is shown in Fig. 4. In three-dimensional case, the suction pressures 

are much smaller, i.e. the so-called “relieving effect” is obtained numerically. 

The static pressure coefficient “suction” values are easily observable when 

the angle of attack is high, Fig. 7, blue region right after the leading edge. The 

coefficient distribution is symmetric in relation to the mid cross section because the 

sideslip angle is zero. Although side wing patches are absent, the static pressure 

coefficient distribution flattens at both wing ends. This result might be explained 

by the wingtip vortex phenomena. 

In Fig. 5, the upper left corner of coefficient matrix A (17) is shown in case 

of circular cylinder serial computations. The dominating main diagonal could also 

be noticed. It justifies usage of the iterative scheme (24). 

Secondary quantities might be computed further such as lift coefficient and 

induced drag. Additional demonstration of the Gauss–Seidel method rate of 

convergence might be seen in [5]. 

The source code used in the current study is developed by means of 

Minimalist GNU v. 5.1.0 for Windows. The visualizer used is ParaView v. 5.6.0. 
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ПРИЛОЖЕНИЕ НА ПАНЕЛЕН МЕТОД ЗА АНАЛИЗ  

НА СТАЦИОНАРНО ТЕЧЕНИЕ ОКОЛО КРИЛО  

С КРАЙНА РАЗПЕРЕНОСТ 

 
К. Методиев 

 
Резюме 

В настоящата статия се изследва течение на несвиваем безвихров 

поток около тяло с крайни размери. За да се намери консервативния вектор 

на полето е необходимо да се реши диференциалното уравнение на Лаплас 

относно потенциална функция. Нетривиално решение на задачата с из-

ползване на втора формула на Грин дава като резултат стойност на по-

тенциалната функция на двойния слой в произволна точка от полето, която не 

принадлежи на граничната повърхност. Потенциалната функция зависи от 

особености в полето на течението „източник/падина“ и „дипол“, разпреде-

лени по повърхността на тялото, както и от следа, прикрепена към задния ръб 

на крилото. Следата гарантира удовлетворяването на условието на Кута. 

Геометрията на тялото се апроксимира с квадратични панели, с цел да се пре-

сметнат лицевите интеграли за всеки панел точно. За да се сведе задачата до 

линейна алгебрична система е необходимо да се пресметне влиянието на 

всеки панел в точка от полето. Получената матрица коефициенти е с преобла-

даващ главен диагонал. Системата се решава итеративно по метода на Гаус-

Зайдел. 

Целта е разработване на сорс код за решаване на поставената задача. 

Кодът е автентичен и в него не са използвани спомагателни библиотеки. 

Тестовете за валидация на кода, както и числените резултати са показани 

графично и обсъдени в статията. 

 


