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Abstract

In the paper hereby, an incompressible irrotational steady flow across a submerged body
with finite dimensions will be studied. For this purpose, it is necessary to solve Laplace’s differential
equation about a potential function in order to obtain the conservative velocity vector field. A general
solution to the problem utilizing the Green identity implies the double layer potential function at an
arbitrary point not belonging to the boundary surface. The potential is expressed by source/sink and
doublet singularities distributed over the body surface and a wake attached to the trailing edge. The
wake ensures that the Kutta condition is fulfilled. The submerged body geometry is approximated
further by quadrilateral panels in order to compute the surface integrals for each panel exactly. To
form a linear non-homogenous algebraic system, it is essentially to compute each panel influence to a
collocation point of interest. The obtained coefficient matrix is diagonally dominant. The system is
solved iteratively by means of the Gauss-Seidel method.

The goal is development of a non-proprietary source code in order to work out a solution to
the stated problem. The developed source code is authentic. Auxiliary libraries have not been used.
Validation case and numerical results are depicted and discussed in the paper.

1. Introduction

The proposed approach towards working out a solution to the stated fluid
problem utilizes the so-called double layer potential method applied to the
Laplace’s equation. In this study case, the flow is assumed irrotational and
incompressible. This is a relatively old method which has been thoroughly studied
and many solution codes have been developed as well. Nevertheless, one
advantage of the method provokes development of the current study case: the
method is fast and applicable to complex geometries of thick bodies generating lift.
What is more, by solving the Laplace’s equation the velocity vector field might be
found out prior to using equations of motion, such as Euler or Navier-Stokes.

The presented study emphasizes on applicability of iterative schemes for
working out a solution to a non-homogenous linear algebraic system relevant to the
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stated fluid problem. In addition, authentic source code development in C is yet
another project goal. To achieve it, Katz and Plotkin’s textbook, [1], was
extensively used by the author as a guide throughout the presented study case.

Fig. 1. Wing and a wake shed by the trailing edge. Lower right corner: the wake panel
strength computation.

2. Problem statement and solution

For an incompressible irrotational flow the continuity equation
(1) Vu=0,
takes the form:
(2) V®=0,

where and @ is potential function of a conservative velocity field u = grad®. The
boundary condition at surface of a submerged body implies that normal velocity
component vanishes:

(3) Vdn=0.

The potential vector grad® is measured in body frame of reference. In
addition, a disturbance created by the body decays at infinity r—oo, i.e.
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@  lim(Vo-vo,)=0,

where grad®., is a vector due to the far field potential. A general solution to the
problem stated by formulae 1-4, might be worked out considering the Green
identity. In this way, the potential function at an arbitrary point P not belonging to
the boundary surface is computed by

() @(P):—;BOJ (:J ,unV( ﬂderMW!ke[ynv( HdSer) (P),

where ¢ (source/sink) and p (doublet) are flow singularities strengths, r is distance
from point P to the surface (body, wake, etc.). The surface integrals are taken over
the body and a wake model, Fig. 1. The wake is assumed to be thin, so that the dot
product n.grad® is continuous across it. This means that the wake cannot support
fluid-dynamic loads, [1, p. 46]. In order to find the potential function @, a unique
combination of sources and doublets distribution on the surface must be known in
advance, [1, p. 47]. The solution (5) is also denoted as a double layer potential. The
integral is computed over a double-sided surface and the normal vector n points
inwards. According to Lamb, [2, p. 40], the impermeability condition (3) results in
a constant inner potential

(6) Vd.n=0=®, =const,

which implies that the current lines are not allowed to enter or leave the inner
region — nor they are contained within. If the above equality holds, there can be no
fluid motion inside the body. Assuming that the inner potential can be set to ®; =
@, = const, equation (5) might be rewritten as follows:

(7) —;BOJ Gj ,unV( HdeWL[ynV( Hds 0.

A numerical solution to equation (7) is worked out in the current study.

The boundary conditions (BCs) might either determine the zero normal
velocity component (direct, Neumann BCs, also (3)) or specify the velocity
potential itself (indirect, Dirichlet BCs) at the boundary surface. Equation (7)
interprets the Dirichlet’s boundary condition. In addition, it is customary to assign
following quantity to the source strength:
® o=-n(V

linear

+Qxr—-V

free stream ) !

where Viinear is body linear velocity, © is body angular velocity, and Viree stream 1S the
free stream velocity.
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Further problem refinement is required to describe flow over a thick body
with sharp trailing edge generating a lift. In order to hold the rear stagnation point
at the trailing edge, sufficient amount of circulation must be created while the body
is moving through the fluid. This statement is yet another interpretation of the
Kutta condition implying that a jump in the velocity potential exists in the vicinity
of the trailing edge and the velocity there is finite.

The wake strength at the trailing edge is determined by setting to zero the
vortex element strength located at the trailing edge. Then, the vortex distribution
might be regained by an equivalent doublet distribution, [1, p. 250]

C)) Yre =—Vu=0,

which condition is fulfilled if

(10) g =CONSU=p4y,  fhy = oy — 1y

where indices W, U, L denote wake, upper, and lower surface respectively, Fig. 1.

The computational algorithm might also be seen in Fig. 1. The influence of
singularities distributed onto the body and the wake is computed for each
collocation point, which is placed at the panel centroid. In the example depicted in
Fig. 1, the collocation point is placed at panel | = 7, j = 6 and the influence panel is
I =5, j = 4. For each collocation, point equation (7) might be written as follows:

N g 1 AT | 1 NOq 1
(11) il n.V[j as+> — nv (j as-y — () dsS =0,
kz=:‘47r85[1yﬂ r é4ﬂw;[keﬂ r ;‘472' B!;yo' r

where singularities p and o accept unit constant strength. The summation is
evaluated for all panels discretizing the body and the wake. To abbreviate the
amount of writing further, following symbols are adopted: for a doublet panel

1 L] ny[esec

T

and for a source element

1 1) .o
w j (Fde:B.

The integrals in (12) and (13) solely depend on the panel geometry. Having
computed all panel influences onto all collocation points, the following non-
homogenous linear algebraic system is obtained:

N NWake N
14) > Cu+ Y. Cut,+ Beoy =0,
k=1 w=1 k=1
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where the source strength o is known at this stage, (8). Equation (14) can be
simplified further by computing the wake doublet in terms of the unknown surface
doublet, Fig. 1, (also see (10)):

(15) My =m—4 -

Then, the influence coefficient takes the form:

(16) Gty =Cu (1 +14) -
Therefore, the first two additives in (14) might be grouped which vyields the
following expression:

N

@) YA =-YBa,.

k=1

where the influence coefficient is computed depending on whether the influence
panel is at the trailing edge or not:

(18) A =C, panel is not at trailing edge
A =C +C, panelisattrailingedge

The expanded form of system (17) is as follows:

a; - Ay || 44 by - byfon
(19) : : : = : : I

Ay Q|4 by, - bulllow

where coefficients a;; and bjj are computed according to generic formulae (12) and
(13). For particular case of quadrilateral source and doublet with constant strength,
formulae derived by Hess and Smith, [3], are used:

e Source
(X_Xa)(yb _ ya)_(y_ ya)(xb _Xa) In Lth +dab _
d, r,+rn—d,
(20) b :_% z b b b
7T edges 7 |:atan ( m.,e, — ha j_ atan [ m,.e, — hb ]:|
Zr, YA
e Doublet
(21) azi Z atan w —atan w .
ATT giges zr, zr,
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In the equation above, following abbreviations are used:

Gy =% =X ) + (Vo= Va)' 1 =y(x=% ) +(y-v,) +72°

@ my=hte e -(x-x )42, h=(x=x)(y-y)
Xy —Xq

i=a,b

where X, y, and z are collocation point coordinates and Xa, Ya, Za, Xb, Yo, and z, are
panel corner points coordinates, indices a and b denote panel corner points
belonging to a same panel edge. All quantities are computed in local (panel)
coordinate system, Fig. 3. Hence, preliminary coordinate transformations must be
made.

After computing the influence coefficients, a non-homogenous linear
algebraic system is obtained in terms of doublet p distribution on the wing surface.
The system is said to be strictly diagonal dominant if following requirement is met:

ay| -

@3 o>

J#i

In other words, the absolute value of each main diagonal element must be greater
than sum of absolute values of the remaining elements in the current row
respectively.

If the requirement (23) is met, then the following stationary iterative
method

i-1

(24) xf:%(bﬁ—Zaﬁ ‘;—Zaijx‘j“lj i=12,....n k=123...

j=1 j=itl

for solving system (17) is said to converge unconditionally. Method (24) is named
after Gauss and Seidel. The formula (24) is a modification of the widely known
Jacobi method:

(25) xik:i b - ax*| i=12...n k=123..
a; j=1
J#i

The convergence criterion used in the algorithm is the relative difference
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(26)  max ‘xk - xk’l‘/‘xk‘ <1073,

Both iterative schemes (24) and (25) require initial guess for the vector x.

#ifndef
#define T

#define
#define
#define

J
=

* atan(l.)

—~ N
e e O O
*

P O O~

#define
#define
#define
#define V

(i) * J + 5

<O HOGHR
0 F 3 X
Ll
o O O
o O O
O~

[ee)
~J
w

typedef

typedef

double real;

struct _panel
real *x , *y

real *x,

{

*o .
’ zZ_;

*Z,'

Y,
real *b,
real
real
real

} myPanel;

*n,
*Va;
dsig,
cp;

*t, S, *P;

dmu;

int geom(myPanel *foo, char *type);

int paraView(real *x, real *y, real *z, real *scalarsoO,
*vecl, real *vec2, char *fileName) ;

myPanel* createPanels (int N);

int deletePanels (myPanel *foo, int N);

real influenceDueToSource (myPanel *foo, real x, real y, real z);

real influenceDueToDoublet (myPanel *foo, real x, real y, real z);

real* solvelLS GS(int N, real *a, real *b);

int do_forces (myPanel *foo);

real *vecO, real

#endif

Fig. 2. Source code header file

In Fig. 2, the source header file is shown. Each panel is represented by a
structure _panel containing panel geometry, apparent velocity (8), and a few
solution quantities, namely singularities strengths and static pressure coefficient.
The panel geometry includes corner points coordinates expressed in both global
and local (panel) coordinate system. The latter is formed by normal, tangent, and
binormal unit vectors as it are shown in Fig. 3 in case of circular cylinder.
In addition, the header contains following function prototypes. Function
“createPanels” allocates memory for specified number of panels and pointers inside
the structure. It returns a pointer to first panel inside the so formed one-dimensional
array of structures. Function “deletePanels” does the opposite. Function “geom”
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calculates all necessary geometric parameters relevant to each panel. The
remaining function prototypes are self-explanatory and easily understandable. The
functions “influenceDueToSource” and “influenceDueToDoublet” compute
influences due to singularities at an arbitrary collocation point. The function
“solve_GS” solves a linear algebraic system (17) iteratively. It returns a pointer to
a solution vector allocated within the function body. What does function
“paraView” is arranging the results to meet the “vtk” file requirements [4] and
storing them onto the hard drive so that the user can visualize the results by means
of a third-party viewer. One dimensional arrays are solely used in the code and
accessed by a two-dimensional macro 1X(i, j), Fig. 2.

Fig. 3. Local coordinate system for each panel, black — normal, red — tangent,
and blue — binormal stored at panel’s centroid

3. Results

A circular cylinder has been used to validate the developed source code.
The static pressure coefficient distribution is visible in Fig. 4. Both front and rear
stagnation areas are clearly visible.
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Fig. 4. Static pressure coefficient distribution over a cylinder, « = 0 deg, 40 x 80 panels

-@.498 6.eel B8.0680 B.0606 G.0606 @.0606 -6.854 -©.801 -©6.800 -0.000 -0.0600 -0.006 -0.839
6. eee -8.498 @.eel B.00806 @.0608 @.6608 -6.881 -8.854 -8.901 -©.000 -0.000 -0.806 -0.802
6. 860 ©.800 -8.498 ©.001 0.860 ©.8068 -6.868 -0.801 -8.854 -9§.801 -0.800 -0.868 -0.800
0. 000 0.e00 B.000 -8.408 9.08l1 ©.060 -0.600 -0.800 -06.801 -©.854 -0.86061 -0.0006 -0.000
6. 0oe o.o008 0.000 0.0006 -8.498 @.e01 -6.088 -©.000 -©.900 -©.801 -©.854 -0.801 -0.000
6. 6ee 8.eae B6.000 6.066 @.660 -8.498 -0.960 -©6.900 -06.000 -©.000 -0.6061 -9.8654 -0.000
-8.851 ©.8ee2 B.088 B.0606 0.060 B.068 -9.5880 -0.800 -0.900 -D.000 -0.000 -D.008 -0.854
-@.808 -8.851 0.082 B.0606 G.0606 @.0606 -6.688 -©0.5080 -0.800 -0.000 -0.800 -0.806 -0.801
6. eee -8.088 -98.851 ©.e82 @.0608 @.6608 -6.888 -©.800 -8.560 -0.000 -0.000 -0.000 -0.000
6. 860 ©.800 -0.886 -0.851 0.082 ©.8068 -0.860 -0.800 -0.800 -©.5860 -0.800 -0.8608 -0.000
0. 000 0.e00 B.000 -0.866 -0.851 0.082 -0.000 -0.800 -0.000 -0.000 -0.500 -0.000 -0.000

6. 0oe -9.080 -0.800 -0.8064 -0.832 -0.0092 -0.000 -0.000 -0.000 -0.882 -0.839 -0.002 -0.000

Fig. 5. Matrix A (eq. 17) upper left corner
Serial computations were also made by means of a finite span wing with

airfoil NACA2412 at different angles of attack. Static pressure coefficient
distribution is shown in Fig. 6 and Fig. 7.
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Fig. 6. Static pressure coefficient distribution over a NACA2412 wing, o. = 0 deg,
20 x 80 panels

[-lleﬂ]ﬂ

Fig. 7. Static pressure coefficient distribution over a NACA2412 wing, a = 10 deg,
20 x 80 panels
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4. Discussion

The obtained static pressure coefficient distribution over a circular cylinder
surface fully agrees with what Katz and Plotkin, [1, p. 69], discuss in their
textbook. The static pressure coefficient varies within 1 and —3, so does the same
quantity which is shown in Fig. 4. In three-dimensional case, the suction pressures
are much smaller, i.e. the so-called “relieving effect” is obtained numerically.

The static pressure coefficient “suction” values are easily observable when
the angle of attack is high, Fig. 7, blue region right after the leading edge. The
coefficient distribution is symmetric in relation to the mid cross section because the
sideslip angle is zero. Although side wing patches are absent, the static pressure
coefficient distribution flattens at both wing ends. This result might be explained
by the wingtip vortex phenomena.

In Fig. 5, the upper left corner of coefficient matrix A (17) is shown in case
of circular cylinder serial computations. The dominating main diagonal could also
be noticed. It justifies usage of the iterative scheme (24).

Secondary quantities might be computed further such as lift coefficient and
induced drag. Additional demonstration of the Gauss—Seidel method rate of
convergence might be seen in [5].

The source code used in the current study is developed by means of
Minimalist GNU v. 5.1.0 for Windows. The visualizer used is ParaView v. 5.6.0.
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MNPUJIOKEHUE HA TAHEJIEH METO/I 3A AHAJIN3
HA CTAIIMOHAPHO TEYEHHME OKOJIO KPUJIO
C KPAMHA PA3IEPEHOCT

K. Memooues

Pe3rome

B macrosimara craTus ce m3cieiBa TCUCHHE HAa HECBHBAcM OC3BHXPOB
ITOTOK OKOJIO TSJIO ¢ KpaWHW pa3MepH. 3a J1a ce HaMepu KOHCEPBATUBHHS BEKTOD
Ha TOJIETO € HeOOXOAMMO Jia ce pelmn Au(epeHIMaTIHoTO yYpaBHeHUe Ha Jlarumac
OTHOCHO ToOTeHIMaiHa (yHKIus. HeTpuBManHO pelieHHWe Ha 3ajadyara ¢ Uu3-
moii3BaHe Ha BTopa ¢opmyia Ha ['puH maBa Karo pe3yirar CTOWHOCT Ha TIO-
TeHIManHaTa QyHKIMS Ha JBOWHHUS CIIOH B IPOM3BOJIHA TOYKA OT MOJIETO, KOSITO HE
HpI/IHaZIHC)KI/I Ha FpaHI/I‘IHaTa HOB’prHOCT. HOTCHHI/I&JIHaTa (byHKHI/Iﬂ 3aBHUCU OT
O0COOCHOCTH B TIOJIETO Ha TEYEHUETO ,,M3TOYHUK/TIAAWHA™ U ,,IUIION, pasIpese-
JISHW TI0 TIOBFPXHOCTTA Ha TSJIOTO, KAKTO U OT Clieqa, MPUKpPETieHa KbM 3aHUAS PbO
Ha kpmwioTo. Cremara rapaHThpa yAOBIETBOPSBaHETO Ha yciaoBueTo Ha Kyra.
['eomeTpusTa Ha TSIIOTO CE APOKCUMHpPA C KBaJAPATUIHU ITAHEIH, C e J1a e Tpe-
CMETHAT JIMIEBUTEe WHTETPATN 32 BCEKHU ITaHEN TOYHO. 3a Jla ce CBele 3a/Javara Jio
JMUHEHHa anre0puYHa cucTeMa € HeoOXOAWMO Jla ce MPEeCMETHE BIMSIHHUETO Ha
BCEKH I1aHeN B TOYKa OT mosieto. [loydeHnaTa MaTpuiia KoeUIMeHTH € ¢ Tpeoliia-
JaBall TiaBeH nuaroHan. CucreMara ce pelaBa HTepPaTHBHO 1O MeTozaa Ha [ayc-
3anine.

Ilenta ¢ pa3paboTBaHe Ha COPC KOJI 3a pelllaBaHe Ha MMOCTaBEHATa 3ajayva.
KonbT € aBTEeHTHMYEH M B HEr0 HE Ca H3MOJI3BAHM CIIOMAraTellHi OUOIHOTEKHU.
TecTtoBere 3a Bammmanus Ha KOJAA, KAKTO W YHCICHHUTE PE3yNTaTH Ca IMOKa3aHU
rpaduaHO ¥ 00CH/ICHH B CTATHUATA.
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