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Abstract 
The aim of the study is to evaluate the possibility for using RapidEye data for prediction of 

Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), fraction of 

vegetation Cover (fCover), leaf Chlorophyll Concentration (CC) and Canopy Chlorophyll Content 

(CCC) of winter wheat. The relation of a number of vegetation indices (VIs) with these crop variables 

is accessed based on a regression analysis. Indices, which make use of the red edge band, such as 

Chlorophyll Index red edge (CIre) and red edge Normalized Difference Vegetation Index (reNDVI), 

were found most useful, resulting in linear models with R2 of 0.67, 0.71, 0.72, and 0.76 for fCover, LAI, 

CCC, and fAPAR respectively. CC was not related with any of the VIs. 

  

 
Introduction 
 

 RapidEye is a remote sensing mission consisting of a constellation of five 
small satellites launched in 2008. One of the main applications of the RapidEye 
satellite data is to provide timely information about the crop condition in support of 
precision agriculture [1]. To better fulfil this aim, the Multi-spectral Imager on board 
RapidEye has a band in the red edge spectral region in addition to the visible and the 
near infrared (NIR) bands. 

RapidEye data has been previously used for estimation of crop variables. For 
example, Vuolo et al. [2] compared physically based (Radiative Transfer Modelling) 
and empirical (Vegetation Indices) approaches for retrieval of LAI and CCC using 
RapidEye imagery. In their study, one regression model was applied for a range of 
crops (fruit trees, maize, and other crops). Using generally calibrated model, 
however, may not provide equally good estimates for all crops. In this study, we are 
only interested in winter wheat and the aim is to investigate empirical relations 
between VIs and biophysical variables that are specific for this crop. 
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Data and methods 
 

Field data 
 

For this study, measurements of biophysical and biochemical variables of 
winter wheat are available from fields located in the north-western part of Sofia 
municipality, close to the residential district of Trebich. Measurements of Leaf Area 
Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), 
fraction of vegetation Cover (fCover) and leaf Chlorophyll Concentration (CC) were 
conducted seven times during the growing seasons of 2014–2015 and 2015–2016 
(Table 1). During the 2014–2015 growing season, 5 plots in each of 2 fields were 
measured each time. During the 2015–2016 growing season 5 fields were sampled 
in a total of 11 plots (one of the plots was not sampled in 18/05/2016, see Table 1). 
In both seasons, the fields were sown with winter wheat Enola variety. In most of 
these seven field campaigns the full set of variables (i.e. LAI, fAPAR, fCover and 
CC) were measured; however fCover were not measured on 02/04/2015 and CC was 
not measured on 15/05/2015. Measurements were made within a plot with size  
5 m × 5 m. AccuPAR LP80 (Decagon Devices©) was used for measuring LAI, 
fAPAR and fCover in 4 “subplots” in each plot. Portable chlorophyll meter  
CCM-300 was used for measuring CC (mg m-2) in 5–6 “subplots” in each plot. The 
averages of the “subplots” measurements were used in further analysis to represent 
the biophysical/biochemical variables at the plot level. Using the CC and LAI 
measurements, the canopy chlorophyll content (CCC) was calculated, where CCC 
(g m-2) = LAI (m2 m-2) × CC (mg m-2) × 0.001. Fig. 1 provide some graphical 
description of data. 

Table 1. Dates of the field campaigns and the corresponding RapidEye images used in this 

study 
 

Growing season Field campaign Development stage RapidEye image 
2014–2015 02/04/2015 Tillering 31/03/2015 
2014–2015 15/04/2015 Stem elongation 20/04/2015 
2014–2015 04/05/2015 Stem elongation 12/05/2015 
2014–2015 15/05/2015 Booting and heading 18/05/2015 
2014–2015 20/05/2015 Heading and start of anthesis 21/05/2015 
2015–2016 13/04/2016 Stem elongation 13/04/2016 
2015–2016 18/05/2016 Heading 23/05/2016 
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Fig. 1. Histograms of ground measured LAI (n = 71; mean = 2.25), fAPAR (n = 71; 

 mean = 0.58), fCover (n = 61, mean = 0.60), Chlorophyll Concentration (CC) (n = 61; 

mean = 463) and Canopy Chlorophyll Content (CCC) (n = 61; mean = 0.96) 
 

  
 

RapidEye data 
 

Seven RapidEye images were available for this study, which dates roughly 
corresponded to the dates of the field campaigns (Table 1). The separation between 
date of field campaign and image acquisition was between 0 and 5 days with only 
one occasion when the gap was 13 days (Table 1). The images are provided as Level-
3A (Ortho product) and showed highly accurate geo-registration as assessed by 
visual inspection of road vector map superimposed on the images. Each scene 
consists of five spectral bands: B1-Blue (440–510 nm); B2-Green (520–590 nm); 
B3-Red (630–685 nm); B4-Red edge (690–730 nm) and B5-Near infrared  
(760–850 nm). The spatial resolution is 5 m for all bands. The image data were 
transformed from DN to spectral radiance (Lλ) using the provided scale factor [3]. 
Then, the top of the atmosphere (TOA) reflectance ρλ was calculated using the 
equation: 

(1) 𝜌𝜆 =
𝜋 × 𝐿𝜆 × 𝑑2

𝐸𝑆𝑈𝑁𝜆 × cos 𝜃𝑆
 , 

 
where Lλ is Spectral radiance [W/(m2 sr μm)], d is Earth–Sun distance [astronomical 
units], ESUNλ is Mean exoatmospheric solar irradiance [W/(m2 μm)], θs is Solar 
zenith angle [degrees] [4]. The values of ESUNλ for each RapidEye band and of θs 
for each acquisition date are available in the image product metadata. 
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Methods  
 

 A database was constructed prior to the analysis, consisting of the 
biophysical/biochemical measurements, the reflectance values in each RapidEye 
band and a range of vegetation indices (VIs). The RapidEye reflectance values for a 
specified plot are extracted using bilinear interpolation, which is a method providing 
an estimated value that represents a weighted average of the 4 input pixels 
surrounding the plot centre. This approach was taken, instead of using only the pixel 
with the closest centroid, in order to account for possible errors in the GPS-measured 
plot coordinates. As the RapidEye spatial resolution (i.e. 5 m) is comparable with 
the GPS accuracy this precaution is justified. The list of vegetation indices is 
presented in Table 2. 
 
Table 2. Spectral vegetation indices calculated in this study using RapidEye data.  

The RapidEye band numbers are used in the formulas 
 

Vegetation Index Abbreviation Formula Reference  
Chlorophyll Index red edge  CIre (B5 / B4) – 1 [5, 6]  
Chlorophyll Index green  CIg (B5 / B2) – 1  [5, 6]  
Normalized Difference Vegetation 
Index  

NDVI (B5 – B3) / (B5 + B3) [7]  

Simple Ratio SR B5 / B3 [8]  
NIR/RE NIR/RE B5 / B4  
RE/RED RE/RED B4 / B3  
Visible Atmospherically Resistant 
Index 

VARI (B2 – B3) / (B2 + B3 – B1) [9]  

red edge Normalized Difference 
Vegetation Index 

reNDVI (B5 – B4) / (B5 + B4) [10]  

Wide Dynamic Range Vegetation 
Index 

WDRVI (0.3 × B5 – B3) / (0.3 × B5 + B3) [11]  

Vegetation Index green  VIg (B2 – B3) / (B2 + B3) [9]  
Optimized Soil-Adjusted 
Vegetation Index 

OSAVI (1 + 0.16) × (B5 – B3) / (B5 + B3 
+ 0.16) 

[12]  

green Normalized Difference 
Vegetation Index 

gNDVI (B5 – B2) / (B5 + B2) [13]  

Modified Triangular Vegetation 
Index 2 

MTVI2     

    0.5B35B5*61B5*2

B2B3*2.5B2B5*1.2*1.5

2


  [14]  

Green Infrared Percentage 
Vegetation Index 

GIPVI B5 / (B5 + B2)  

green Normalized Difference 
Vegetation Index1 

gNDVI1 (B4 – B2) / (B4 + B2)  

Perpendicular Vegetation Index† PVA (B5 – a × B3 – b) / (SQRT(1 + a2)) [15]  
Transformed Soil Adjusted 
Vegetation index †‡ 

TSAVI (a × (B5 – a × B3 – b)) / (a × B5 + 
B3 − ab + X × (1 + a2)) 

[16]  

Soil Adjusted Vegetation index 2† SAVI2 B5 / (B3 + (b / a)) [17]  
† a and b are the slope and the intercept of the soil line (see Fig. 2);  ‡ X=0.08 



67 
 

 The vegetation indices were selected based on a literature review. Special 
emphasis was placed on the VIs that used bands from the red edge spectral region. 
Also, three soil adjusted VIs were calculated, Perpendicular Vegetation Index (PVI, 
[15]), Transformed Soil Adjusted Vegetation index (TSAVI, [16]), and Soil 
Adjusted Vegetation index 2 (SAVI2, [17]). The soil adjusted VIs used the 
parameters of the soil line in their formulas. The soil line was derived empirically 
using manually selected bare soil and stubble pixels (Fig. 2). Stubble pixels were 
used because crop residue may constitute significant part of the background 
reflectance in the winter wheat fields. 
 

 
 

Fig. 2. Near infrared (NIR) band reflectance regressed on the red band reflectance for 

soil/stubble pixels from RapidEye (image data 31 March 2015, 20 April 2015 

 and 13 April 2016) 

 

We used two approaches to compare the potential of different VIs for 
prediction of biophysical/biochemical variables. First, the association of each 
biophysical/biochemical variables with each VI was visually assessed using 
scatterplots. The second, quantitative, approach was based on the regression 
analysis. All VIs were systematically evaluated by fitting linear and exponential 
models with each biophysical/biochemical variable being dependant variable. These 
two models have the form y=a + bx and y=a × ebx respectively, where a and b are 
the regression parameters to be estimated. Literature suggested that, in most cases, 
the relation between biophysical/biochemical variable of crop and spectral 
vegetation index can be described by one of these two models. We used regression 
analysis, instead of some measure of correlation, because the interest is on the 
prediction capabilities. This approach also permitted us to account explicitly for the 
type of the relation, i.e. linear or nonlinear. The Root Mean Square Error (RMSE) 
was calculated for each model using the leave-one-out method: 

 

(2) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑖 

𝑛
 , 
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where yi is the measured value for the i-th observation and ŷi is the predicted value 
for that observation derived from a model calibrated with all observations except i. 
The RMSE was used as a criterion for the performance of the VIs. Note that not 
every model produced in this procedure makes sense. For example, if the relation 
between a VI and LAI is curve-linear then fitting a straight line to this data would be 
erroneous. For every given combination of biophysical/biochemical variable and VI 
the lower RMSE may indicate which model (linear or exponential) might be more 
appropriate but one should not rely on this. In any case, the scatterplot must be 
checked. 
 For this analysis, we did not pay attention for the regression assumptions 
because the aim was to make some automated and consistent comparison of a 
number of VIs and found those that may represent interest for further analysis. 

 
Results  
 

The scatterplots obtained from RapidEye VIs against the five winter wheat 
biophysical/biochemical variables are displayed in Fig. 3. Fig. 4 shows the RMSE 
of the fitted linear and exponential models for each combination.  

The scatterplots suggest that LAI is most strongly correlated with 
Chlorophyll Index red edge (CIre) (this index is, in practice, equivalent to the 
NIR/RE ratio (see Table 2)). The form of the relation may be roughly described as 
linear but some outliers (low LAI values corresponding to high CIre) contradict this 
general trend. The regression analyses confirm that the best linear predictor of LAI 
is CIre (RMSE = 1.05). Exponential model is more appropriate to describe the 
relation of LAI to some of the other VIs such as the red edge Normalized Difference 
Vegetation Index (reNDVI). The RMSE of the exponential model with reNDVI is 
1.06. Thus, similar results are obtained using linear and exponential models. 

The fAPAR and fCover behave very similarly with respect to their relation 
with the VIs. In general, the scatter of data points is high, which indicates relatively 
poor relationship for most VIs (Fig. 3). The linear models with lowest error are those 
with reNDVI (RMSE = 0.16 for both fAPAR and fCover), but other indices such as 
NDVI, TSAVI and OSAVI perform almost equally well. The exponential model 
form was not appropriate for any of the VIs.    

There was no correlation between CC and the tested VIs. This is probably 
because other factors, such as background reflectance and canopy structure mask the 
differences in CC at leaf level. CCC showed better association with the VIs but this 
is not surprising because the variation of CCC is affected mostly by the variation of 
LAI. As with LAI, the best model is the linear model with CIre which yielded RMSE 
of 0.47 g m-2.      
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On Fig. 6 are shown the best performing linear model for each 
biophysical/biochemical variable. The models explain between 67 % (fCover) and 
76 % (fAPAR) of the variability of the dependent variable. In general, the level of 
uncertainty is too high for these models to provide reliable estimates at pixel level. 
Even though the predictions are not precise, they are unbiased as indicated by the 
mean residuals, which are close to zero for all models (data not shown). This may be 
important if the estimates are to be aggregated at field or regional level.  

 

 

 
 

Fig. 3. Scatterplots of the studied biophysical/biochemical variables  

and the RapidEye vegetation indices 

 
Characteristic for both LAI and CCC is the increasing dispersion with the 

increase of CIre. Predictions become more uncertain approaching the peak of the 
growing season in May when winter wheat is in heading and anthesis phenological 
stages. The team led by Dahms [18] has also found that LAI and FPAR are difficult 
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to predict at the phenological phase of fruit development, which, according to the 
authors, is most likely due to canopy closure in combination with accompanied 
saturation effects in the RapidEye observations. 

None of the tested soil adjusted vegetation indices improved significantly 
the prediction capabilities of the models probably because the variation in 
background reflectance was not an important factor for the observed prediction 
uncertainty. A paper by Ali et al. [19] showed that a similar index to those used in 
our study, the Soil Adjusted Vegetation Index, do not necessarily outperform NDVI 
in the estimation of LAI with RapidEye. As shown, most uncertainty is related with 
the closed canopies, while the soil adjusted VIs are designed to improve the relation 
with the vegetation parameters in open canopies where soil contribution is  
significant [20]. 

 

 
 

Fig. 4. Comparison of the accuracy (RMSE = root mean square error) of regression 

models employing different vegetation indices. Both linear and exponential models 

 for prediction of LAI, fAPAR, fCover, and CCC are shown. 

  
The regression models were assessed using the RMSE value. The best 

models were used for calculation of prediction maps for the targeted 
biophysical/biochemical parameters. CIre was the index with the lowest RMSE 
value among other indices for predicting LAI in winter wheat. The RMSE showed 
relatively low error of 1.05 m2 m-2. 

The LAI maps were calculated using vegetation index map with the spectral 
values from each RapidEye image, and the coefficients derived from the regression 
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analysis. On Fig. 5 are represented the LAI maps derived for each of the available 
RapidEye images from vegetation season 2015. 

The resulting map consisted of one layer, whereby each pixel in the map had 
a value for the predicted LAI. The predicted values based on the linear regression 
coefficients of the CIre relation resulted in some pixels with negative values. The 
negative LAI result is of course not possible in the reality, but the values are result 
of a simple linear mathematical function. However, the fraction of the pixels having 
negative LAI values, can be attributed to pixels with exposed soil cover. This is the 
reason to find larger proportion of pixels with negative values during the first two 
dates (31/03/2015 and 20/04/2015). 

In the maps is shown the infield variation of LAI, which could be of interest 
for the farmers for the management practices. On the other hand, the 6 maps also 
show the seasonal dynamic of LAI during the vegetation season. 

 

 
 

Fig. 5. Predicted LAI (m2m-2) maps for winter wheat 

 

Conclusions 
  

 In this study, we compared a range of VIs calculated from RapidEye data 
with respect to their potential for prediction of LAI, fAPAR, fCover, CC, and CCC 
in winter wheat fields (Fig. 6). Of these biophysical/biochemical variables, only CC 
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was not significantly correlated with any of the tested VIs. For prediction of LAI and 
CCC, the most useful indices appear to be CIre and reNDVI, for which linear and 
exponential regression models are appropriate respectively. We found that reNDVI 
is the best predictor of fAPAR and fCover, but that several other indices perform 
almost equally well. Both reNDVI and CIre employ the red edge band, which 
confirm the importance of the red edge spectral region for crop condition 
characterisation. Note however, that it is possible for several VIs to show similar 
results and more data are needed to find if given VI should be preferred to the others.  
 

  

  
 

Fig. 6. Linear regression models for LAI, fAPAR, fCover and CCC  

with selected VIs from RapidEye 

 
The accuracy of the regression models presented in this study is relatively low. 

This may be due to atmospheric effects on the satellite data, presence of weeds on 
the field plots or other factors. In conclusion, VIs from RapidEye employing the red 
edge band are promising for winter wheat variables characterization, but further 
experimental work is needed to better understand the sources of uncertainty and 
eventually increase prediction accuracy of the regression models. 
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ИЗСЛЕДВАНЕ НА ВЪЗМОЖНОСТИТЕ ЗА ОПРЕДЕЛЯНЕ  

НА БИОФИЗИЧНИ/БИОХИМИЧНИ ПОКАЗАТЕЛИ  

НА ЗИМНА ПШЕНИЦА ЧРЕЗ ВЕГЕТАЦИОННИ ИНДЕКСИ  

ОТ RAPIDEYE 

И. Каменова, П. Димитров, Р. Йорданова 

 

Резюме 

Целта на изследването е да оцени възможностите за приложение на 
данни от спътниковата система RapidEye за определяне на индекса на листната 
повърхност (LAI), дела на погълнатата фотосинтетично активна радиация 
(fAPAR), проективното покритие (fCover), концентрацията на хлорофил в 
листата (CC) и хлорофилното съдържание в растенията на единица площ от 
земната повърхност (CCC) на посеви от зимна пшеница. Връзката на тези 
показатели с различни вегетационни индекси е изследвана чрез регресионен 
анализ. Индекси използващи спектралния канал „red-edge“ на RapidEye, като 
например Chlorophyll Index red edge (CIre) и red-edge Normalized Difference 

Vegetation Index (reNDVI) са най-полезни, позволявайки съставянето на 
линейни регресионни модели с детерминационни коефициенти 0.67, 0.71, 0.72 
и 0.76 съответно за fCover, LAI, CCC и fAPAR. Концентрацията на хлорофил 
в листата не се корелира с никой от използваните вегетационни индекси. 


