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Abstract

The aim of the study is to evaluate the possibility for using RapidEye data for prediction of
Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), fraction of
vegetation Cover (fCover), leaf Chlorophyll Concentration (CC) and Canopy Chlorophyll Content
(CCC) of winter wheat. The relation of a number of vegetation indices (VIs) with these crop variables
is accessed based on a regression analysis. Indices, which make use of the red edge band, such as
Chlorophyll Index red edge (Clre) and red edge Normalized Difference Vegetation Index (reNDVI),
were found most useful, resulting in linear models with R? of 0.67, 0.71, 0.72, and 0.76 for fCover, LAI,
CCC, and fAPAR respectively. CC was not related with any of the VIs.

Introduction

RapidEye is a remote sensing mission consisting of a constellation of five
small satellites launched in 2008. One of the main applications of the RapidEye
satellite data is to provide timely information about the crop condition in support of
precision agriculture [1]. To better fulfil this aim, the Multi-spectral Imager on board
RapidEye has a band in the red edge spectral region in addition to the visible and the
near infrared (NIR) bands.

RapidEye data has been previously used for estimation of crop variables. For
example, Vuolo et al. [2] compared physically based (Radiative Transfer Modelling)
and empirical (Vegetation Indices) approaches for retrieval of LAI and CCC using
RapidEye imagery. In their study, one regression model was applied for a range of
crops (fruit trees, maize, and other crops). Using generally calibrated model,
however, may not provide equally good estimates for all crops. In this study, we are
only interested in winter wheat and the aim is to investigate empirical relations
between Vs and biophysical variables that are specific for this crop.

63


https://doi.org/10.3897/arb.v30.e06

Data and methods

Field data

For this study, measurements of biophysical and biochemical variables of
winter wheat are available from fields located in the north-western part of Sofia
municipality, close to the residential district of Trebich. Measurements of Leaf Area
Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR),
fraction of vegetation Cover (fCover) and leaf Chlorophyll Concentration (CC) were
conducted seven times during the growing seasons of 2014-2015 and 2015-2016
(Table 1). During the 2014-2015 growing season, 5 plots in each of 2 fields were
measured each time. During the 2015-2016 growing season 5 fields were sampled
in a total of 11 plots (one of the plots was not sampled in 18/05/2016, see Table 1).
In both seasons, the fields were sown with winter wheat Enola variety. In most of
these seven field campaigns the full set of variables (i.e. LAL, fAPAR, fCover and
CC) were measured; however fCover were not measured on 02/04/2015 and CC was
not measured on 15/05/2015. Measurements were made within a plot with size
5 m x 5 m. AccuPAR LP80 (Decagon Devices©) was used for measuring LAI,
fAPAR and fCover in 4 “subplots” in each plot. Portable chlorophyll meter
CCM-300 was used for measuring CC (mg m) in 5-6 “subplots” in each plot. The
averages of the “subplots” measurements were used in further analysis to represent
the biophysical/biochemical variables at the plot level. Using the CC and LAI
measurements, the canopy chlorophyll content (CCC) was calculated, where CCC
(gm?) = LAI (m*m?) x CC (mgm?) x 0.001. Fig. 1 provide some graphical
description of data.

Table 1. Dates of the field campaigns and the corresponding RapidEye images used in this
study

Growing season Field campaign Development stage RapidEye image
20142015 02/04/2015 Tillering 31/03/2015
20142015 15/04/2015 Stem elongation 20/04/2015
20142015 04/05/2015 Stem elongation 12/05/2015
20142015 15/05/2015 Booting and heading 18/05/2015
20142015 20/05/2015 Heading and start of anthesis 21/05/2015
20152016 13/04/2016 Stem elongation 13/04/2016
20152016 18/05/2016 Heading 23/05/2016
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Fig. 1. Histograms of ground measured LAI (n = 71; mean = 2.25), fAPAR (n = 71,
mean = 0.58), fCover (n = 61, mean = 0.60), Chlorophyll Concentration (CC) (n = 61;
mean = 463) and Canopy Chlorophyll Content (CCC) (n = 61; mean = 0.96)

RapidEye data

Seven RapidEye images were available for this study, which dates roughly
corresponded to the dates of the field campaigns (Table 1). The separation between
date of field campaign and image acquisition was between 0 and 5 days with only
one occasion when the gap was 13 days (Table 1). The images are provided as Level-
3A (Ortho product) and showed highly accurate geo-registration as assessed by
visual inspection of road vector map superimposed on the images. Each scene
consists of five spectral bands: B1-Blue (440-510 nm); B2-Green (520-590 nm);
B3-Red (630-685 nm); B4-Red edge (690-730 nm) and B5-Near infrared
(760—850 nm). The spatial resolution is 5 m for all bands. The image data were
transformed from DN to spectral radiance (L;) using the provided scale factor [3].
Then, the top of the atmosphere (TOA) reflectance p, was calculated using the
equation:

X Ly x d?

(1) Py =

" ESUN, X cos0s’

where L; is Spectral radiance [W/(m? sr um)], d is Earth—Sun distance [astronomical
units], ESUN, is Mean exoatmospheric solar irradiance [W/(m? pum)], 6s is Solar
zenith angle [degrees] [4]. The values of ESUN; for each RapidEye band and of s
for each acquisition date are available in the image product metadata.
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Methods

A database was constructed prior to the analysis, consisting of the
biophysical/biochemical measurements, the reflectance values in each RapidEye
band and a range of vegetation indices (VIs). The RapidEye reflectance values for a
specified plot are extracted using bilinear interpolation, which is a method providing
an estimated value that represents a weighted average of the 4 input pixels
surrounding the plot centre. This approach was taken, instead of using only the pixel
with the closest centroid, in order to account for possible errors in the GPS-measured
plot coordinates. As the RapidEye spatial resolution (i.e. 5 m) is comparable with
the GPS accuracy this precaution is justified. The list of vegetation indices is

presented in Table 2.

Table 2. Spectral vegetation indices calculated in this study using RapidEye data.

The RapidEye band numbers are used in the formulas

Vegetation Index Abbreviation | Formula Reference
Chlorophyll Index red edge Clre (B5/B4)-—1 [5, 6]
Chlorophyll Index green Clg (B5/B2)-1 [5, 6]
Normalized Difference Vegetation | NDVI (B5-B3)/(B5+B3) [7]
Index

Simple Ratio SR B5/B3 [8]
NIR/RE NIR/RE B5/B4

RE/RED RE/RED B4 /B3

Visible Atmospherically Resistant | VARI (B2-B3)/(B2+B3-BIl) [9]
Index

red edge Normalized Difference reNDVI (B5-B4)/(B5+B4) [10]
Vegetation Index

Wide Dynamic Range Vegetation | WDRVI (0.3xB5-B3)/(0.3xB5+B3) [[11]
Index

Vegetation Index green Vig (B2 - B3) /(B2 + B3) [9]
Optimized Soil-Adjusted OSAVI (1+0.16)x(B5-B3)/(B5+B3 |[12]
Vegetation Index +0.16)

green Normalized Difference eNDVI (B5-B2)/(B5+B2) [13]
Vegetation Index

Modified Triangular Vegetation MTVI2 1,5*[1,2*(B5—Bz)—2.5*(B3—Bz)] [14]
Index 2 \/(2*B5+1)2—(6*Bs—5@)—0.5

Green Infrared Percentage GIPVI B5/(B5 +B2)

Vegetation Index

green Normalized Difference eNDVI1 (B4-B2)/(B4 +B2)

Vegetation Index1

Perpendicular Vegetation Indext PVA (B5 —ax B3 -b)/(SQRT(1 +a?)) |[15]
Transformed Soil Adjusted TSAVI (ax(B5-axB3-b))/(axB5+ |[16]
Vegetation index T3 B3 —ab+ X x (1 +a?)

Soil Adjusted Vegetation index 21 |[SAVI2 B5/ (B3 +(b/a) [17]

+ aand b are the slope and the intercept of the soil line (see Fig. 2); I X=0.08
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The vegetation indices were selected based on a literature review. Special
emphasis was placed on the VIs that used bands from the red edge spectral region.
Also, three soil adjusted VIs were calculated, Perpendicular Vegetation Index (PVI,
[15]), Transformed Soil Adjusted Vegetation index (TSAVI, [16]), and Soil
Adjusted Vegetation index 2 (SAVI2, [17]). The soil adjusted VIs used the
parameters of the soil line in their formulas. The soil line was derived empirically
using manually selected bare soil and stubble pixels (Fig. 2). Stubble pixels were
used because crop residue may constitute significant part of the background
reflectance in the winter wheat fields.

Fig. 2. Near infrared (NIR) band reflectance regressed on the red band reflectance for
soil/stubble pixels from RapidEye (image data 31 March 2015, 20 April 2015
and 13 April 2016)

We used two approaches to compare the potential of different VIs for
prediction of biophysical/biochemical variables. First, the association of each
biophysical/biochemical variables with each VI was visually assessed using
scatterplots. The second, quantitative, approach was based on the regression
analysis. All VIs were systematically evaluated by fitting linear and exponential
models with each biophysical/biochemical variable being dependant variable. These
two models have the form y=a + bx and y=a x e respectively, where a and b are
the regression parameters to be estimated. Literature suggested that, in most cases,
the relation between biophysical/biochemical variable of crop and spectral
vegetation index can be described by one of these two models. We used regression
analysis, instead of some measure of correlation, because the interest is on the
prediction capabilities. This approach also permitted us to account explicitly for the
type of the relation, i.e. linear or nonlinear. The Root Mean Square Error (RMSE)
was calculated for each model using the leave-one-out method:

@) RMSE — ’Zi(yin_ yi)? ,
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where Vi is the measured value for the i-th observation and i is the predicted value
for that observation derived from a model calibrated with all observations except i.
The RMSE was used as a criterion for the performance of the VIs. Note that not
every model produced in this procedure makes sense. For example, if the relation
between a VI and LAl is curve-linear then fitting a straight line to this data would be
erroneous. For every given combination of biophysical/biochemical variable and VI
the lower RMSE may indicate which model (linear or exponential) might be more
appropriate but one should not rely on this. In any case, the scatterplot must be
checked.

For this analysis, we did not pay attention for the regression assumptions
because the aim was to make some automated and consistent comparison of a
number of VIs and found those that may represent interest for further analysis.

Results

The scatterplots obtained from RapidEye VIs against the five winter wheat
biophysical/biochemical variables are displayed in Fig. 3. Fig. 4 shows the RMSE
of the fitted linear and exponential models for each combination.

The scatterplots suggest that LAI is most strongly correlated with
Chlorophyll Index red edge (Clre) (this index is, in practice, equivalent to the
NIR/RE ratio (see Table 2)). The form of the relation may be roughly described as
linear but some outliers (low LAI values corresponding to high Clre) contradict this
general trend. The regression analyses confirm that the best linear predictor of LAI
is Clre (RMSE = 1.05). Exponential model is more appropriate to describe the
relation of LAI to some of the other VIs such as the red edge Normalized Difference
Vegetation Index (reNDVI). The RMSE of the exponential model with reNDVI is
1.06. Thus, similar results are obtained using linear and exponential models.

The fAPAR and fCover behave very similarly with respect to their relation
with the VIs. In general, the scatter of data points is high, which indicates relatively
poor relationship for most Vs (Fig. 3). The linear models with lowest error are those
with reNDVI (RMSE = 0.16 for both fAPAR and fCover), but other indices such as
NDVI, TSAVI and OSAVI perform almost equally well. The exponential model
form was not appropriate for any of the Vls.

There was no correlation between CC and the tested VIs. This is probably
because other factors, such as background reflectance and canopy structure mask the
differences in CC at leaf level. CCC showed better association with the VIs but this
is not surprising because the variation of CCC is affected mostly by the variation of
LAIL As with LAI, the best model is the linear model with Clre which yielded RMSE
0of 0.47 gm™.
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On Fig. 6 are shown the best performing linear model for each
biophysical/biochemical variable. The models explain between 67 % (fCover) and
76 % (fAPAR) of the variability of the dependent variable. In general, the level of
uncertainty is too high for these models to provide reliable estimates at pixel level.
Even though the predictions are not precise, they are unbiased as indicated by the
mean residuals, which are close to zero for all models (data not shown). This may be
important if the estimates are to be aggregated at field or regional level.
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Fig. 3. Scatterplots of the studied biophysical/biochemical variables
and the RapidEye vegetation indices

Characteristic for both LAI and CCC is the increasing dispersion with the
increase of Clre. Predictions become more uncertain approaching the peak of the
growing season in May when winter wheat is in heading and anthesis phenological
stages. The team led by Dahms [18] has also found that LAI and FPAR are difficult

69



to predict at the phenological phase of fruit development, which, according to the
authors, is most likely due to canopy closure in combination with accompanied
saturation effects in the RapidEye observations.

None of the tested soil adjusted vegetation indices improved significantly
the prediction capabilities of the models probably because the variation in
background reflectance was not an important factor for the observed prediction
uncertainty. A paper by Ali et al. [19] showed that a similar index to those used in
our study, the Soil Adjusted Vegetation Index, do not necessarily outperform NDVI
in the estimation of LAI with RapidEye. As shown, most uncertainty is related with
the closed canopies, while the soil adjusted VIs are designed to improve the relation
with the vegetation parameters in open canopies where soil contribution is
significant [20].

Fig. 4. Comparison of the accuracy (RMSE = root mean square error) of regression
models employing different vegetation indices. Both linear and exponential models
for prediction of LAI, fAPAR, fCover, and CCC are shown.

The regression models were assessed using the RMSE value. The best
models were used for calculation of prediction maps for the targeted
biophysical/biochemical parameters. Clre was the index with the lowest RMSE
value among other indices for predicting LAI in winter wheat. The RMSE showed
relatively low error of 1.05 m*> m™.

The LAI maps were calculated using vegetation index map with the spectral
values from each RapidEye image, and the coefficients derived from the regression
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analysis. On Fig. 5 are represented the LAI maps derived for each of the available
RapidEye images from vegetation season 2015.

The resulting map consisted of one layer, whereby each pixel in the map had
a value for the predicted LAIL The predicted values based on the linear regression
coefficients of the Clre relation resulted in some pixels with negative values. The
negative LAI result is of course not possible in the reality, but the values are result
of a simple linear mathematical function. However, the fraction of the pixels having
negative LAI values, can be attributed to pixels with exposed soil cover. This is the
reason to find larger proportion of pixels with negative values during the first two
dates (31/03/2015 and 20/04/2015).

In the maps is shown the infield variation of LAI, which could be of interest
for the farmers for the management practices. On the other hand, the 6 maps also
show the seasonal dynamic of LAI during the vegetation season.
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Fig. 5. Predicted LAI (m?m2) maps for winter wheat

Conclusions

In this study, we compared a range of VIs calculated from RapidEye data
with respect to their potential for prediction of LAI, fAPAR, fCover, CC, and CCC
in winter wheat fields (Fig. 6). Of these biophysical/biochemical variables, only CC
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was not significantly correlated with any of the tested VIs. For prediction of LAI and
CCC, the most useful indices appear to be Clre and reNDVI, for which linear and
exponential regression models are appropriate respectively. We found that reNDVI
is the best predictor of fAPAR and fCover, but that several other indices perform
almost equally well. Both reNDVI and Clre employ the red edge band, which
confirm the importance of the red edge spectral region for crop condition
characterisation. Note however, that it is possible for several VIs to show similar
results and more data are needed to find if given VI should be preferred to the others.

Fig. 6. Linear regression models for LAI, fAPAR, fCover and CCC
with selected VIs from RapidEye

The accuracy of the regression models presented in this study is relatively low.
This may be due to atmospheric effects on the satellite data, presence of weeds on
the field plots or other factors. In conclusion, VIs from RapidEye employing the red
edge band are promising for winter wheat variables characterization, but further
experimental work is needed to better understand the sources of uncertainty and
eventually increase prediction accuracy of the regression models.

72



Acknowledgments

This study was funded by the Bulgarian Academy of Sciences through the
Young Scientists and PhD Students Support Programme (Grant Ne JJOHII-17-177).
The RapidEye imagery was provided by ESA (Category-1 Project ID 29490). The
authors are grateful to Ms V. Todorova from the co-operative in Trebich for
providing access to the fields and to G. Jelev and Y. Naydenov who helped with the
fieldwork.

References

1. Tyc, G., J. Tulip, D. Schulten, M. Krischke, and M. Oxfort. The RapidEye mission design.
Acta Astronautica, 2005, 56, 213—19.

2. Vuolo, F., C. Atzberger, K. Richter, G. D’Urso, and J. Dash. Retrieval of biophysical

vegetation products from RapidEye imagery. In: Wagner W., Székely, B. (eds.): ISPRS
TC VII Symposium — 100 Years ISPRS, Vienna, Austria, July 5-7, 2010, IAPRS, Vol.
XXXVIII, Part 7A, 281-86.

. BlackBridge. Satellite Imagery Product Specifications, Version 6.1, April 2015, 48 p.

4. Chander, G., B. L. Markham, and D. L. Helder. Summary of current radiometric calibration
coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of
Environment, 2009, 113, 893-903.

5. Gitelson, A., Y. Gritz, and M.N. Merzlyak. Relationships between leaf chlorophyll content
and spectral reflectance and algorithms for non-destructive chlorophyll assessment in
higher plant leaves. Journal of Plant Physiology, 2003, 160, 271-82.

6. Gitelson, A., G.P. Keydan, and M.N. Merzlyak. Three-band model for noninvasive
estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves.
Geophys. Res. Lett., 2006, 33, L11402, DOI:10.1029/2006GL026457.

7. Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering. Monitoring vegetation systems in
the Great Plains with ERTS. In: Third ERTS Symposium, 1973, NASA SP-351, vol. 1,
NASA, Washington, DC, 309-317.

8. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology,
1969, 50, 663—66.

9. Gitelson, A., Y.J. Kaufman, R. Stark, and D. Rundquist. Novel algorithms for remote
estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80, 76—87.

10. Gitelson, A., and M.N. Merzlyak. Spectral reflectance changes associated with autumn
senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves.Spectral
features and relation to chlorophyll estimation. J. Plant Physiol., 1994, 143, 286-92.

11. Gitelson, A. Wide Dynamic Range Vegetation Index for Remote Quantification of
Biophysical Characteristics of Vegetation. J. Plant Physiol., 2004, 161, 165-73.

12. Rondeaux, G., M. Steven, and F. Baret. Optimization of soil-adjusted vegetation indices.
Remote Sensing of Environment, 1996, 55, 2, 95-107.

13. Gitelson, A., Y.J. Kaufman, and M.N. Merzlyak. Use of a green channel in remote
sensing of global vegetation from EOS-MODIS. Rem. Sens. Envir., 1996, 58, 289-98.

W

73



14. Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.B. Strachan. Hyper-
spectral vegetation indices and novel algorithms for predicting green LAI of crop
canopies: modelling and validation in the context of precision agriculture. Remote
Sensing of Environment, 2004, 90, 337-52.

15. Richardson, A.J., and J.H. Everitt. Using Spectral Vegetation Indices to Estimate
Rangeland Productivity. Geocarto International, 1992, 7, 1, 63—69.

16. Baret, F., G. Guyot. Potentials and limits of vegetation indices for LAI and APAR
assessment. Remote Sensing of Environment, 1991, 35, 161-73.

17. Major, D. J., F. Baret, and G. Guyot. A ratio vegetation index adjusted for soil brightness.
International Journal of Remote Sensing, 1990, 11, 727—40.

18. Dahms, T., S. Seissiger, E. Borg, H. Vajen, B. Fichtelmann, C. Conrad. Important
Variables of a RapidEye Time Series for Modelling Biophysical Parameters of Winter
Wheat. PFG, 2016, 5 — 6, 285-99. DOI: 10.1127/pfg/2016/0303.

19. Ali, M., C. Montzka, A. Stadler, G. Menz, F. Thonfeld, and H. Vereechen. Estimation
and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat
in the Rur Catchment (Germany). Remote Sensing, 2015, 7, 2808-31,
DOI:10.3390/rs70302808.

20. Bannari, A., D. Morin, F. Bonn, and A.R. Huete. A review of vegetation indices. Remote
sensing reviews, 1995, 13, 95—-120.

N3CIEABAHE HA BBb3AMOKHOCTHUTE 3A OIIPEAEJISIHE
HA BUOPU3NYHU/BUOXUMUYHHU ITOKA3ATEJIN
HA 3UMHA IMIIEHUIIA YPE3 BETETAIIMOHHU UHAEKCH
OT RAPIDEYE

H. Kamenoga, I1. lumumpos, P. Hopoanosa

Pesrome

Ilenta Ha M3CIENBAHETO € J1a OIEHH BBH3MOKHOCTUTE 3a MPUIOKEHHE Ha
JaHHU OT cITbTHUKOBaTa cuctema RapidEye 3a onpenensine Ha nHIEKca Ha JIMCTHATA
noBbpxHOCT (LAI), nema Ha morbiHatata (DOTOCHHTETUYHO aKTHUBHA pajJHalus
(fAPAR), npoextuBHoTO mokputue (fCover), KOHIEHTpanusITa Ha XJIOpPOQHI B
mucrata (CC) u xm0poMIHOTO ChABPKAHUE B PACTEHHATA HA €IWHHLA IUIOL] OT
3emHara noBbpxHOCT (CCC) Ha moceBM OT 3MMHa MIIeHUIAa. Bpb3kara Ha Te3u
MOKa3aTeNy C pa3iIndHN BEreTallMOHHU MHJICKCU € M3Cle/[BaHa Ype3 perpecuoHeH
ananu3. MHaexcn u3non3Bamy cuekTpanHus kaHan ,,red-edge na RapidEye, karo
nanpumep Chlorophyll Index red edge (Clre) u red-edge Normalized Difference
Vegetation Index (reNDVI) ca waii-moje3nn, MO3BOISBAWKH CBHCTaBIHETO Ha
JUHEHHH PErPECHOHHN MOJICIH C JIeTepMUHANIMOHHY Koedunmentn 0.67, 0.71, 0.72
u 0.76 cvotBetHO 3a fCover, LAI, CCC u fAPAR. Konuenrpauusra Ha xiopodur
B JINCTATa HE Ce KOPEIUpa C HUKOW OT U3MOJI3BAaHUTE BEreTA[HOHHH UHJICKCH.
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