Bulgarian Academy of Sciences. Space Research and Technology Institute.
Aerospace Research in Bulgaria. 28, 2016, Sofia

A RECTANGULAR UNIPOLAR PULSE WIDTH MEASUREMENT
BY MEANS OF PIC18F2550 MCU

Konstantin Metodiev

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: komet@space.bas.bg

Abstract

The article examines an approach towards pulse width measurement by means of
PIC18F2550 microcontroller unit (MCU). The proposed solution may come into use in process
automation where the MCU decides in virtue of the measured quantity, for instance in case of a pulse
with modulation. By way of illustration, it is possible to install the MCU on-board an unmanned
aerial vehicle (UAV). In this case, the MCU reads a PWM input signal fed by the radio receiver and
actuate a terminal mechanism afterwards depending upon the measured duty cycle value.

Special attention is given to the MCU software peculiarities. Additional computer
simulation has also been made. The used software was MikroC Pro for PIC and Proteus VMS. The
proposed solution has been shown to operate with sufficient precision. The source code is also
included in the present article.

1. Introduction

Microcontrollers units (MCU) are vastly useful nowadays. Among many
features supported, the ability of MCU to capture edges of a rectangular signal is
applicable to many solutions. Should an edge happen to be registered, the MCU
generates external interrupt and an interrupt service routine (ISR) is triggered
afterwards. Because of this, the MCU no longer has to wait and check whether new
impulse has arrived which is the major drawback of the so-called ‘polling
approach’ [1]. Having that said, the possibility of counting time between
consecutive rising and falling edges seems feasible.

The main purpose of the present article is to demonstrate the ability of such
a simple solution to measure the pulse width automatically, see fig. 1, and then set
in motion either a terminal mechanism or a circuit. Consider the emergency
parachute on-board the LHK-3M unmanned aerial vehicle (UAV) as an example.
By default, the chute is locked by a servo motor. The MCU might be connected
parallel to the PWM wire as a sniffer. If a duty cycle value set in advance occurs,
this means that the chute has been released. Then the MCU shuts the engine off by
triggering a common emitter amplifier (bipolar transistor) and a relay.

122



2. Materials and methods

The electronic circuit consists of minimum required parts that make the
MCU running according to Fig. 2, i.e. a high speed crystal of 20 MHz and two
capacitors of 15 pF each. These are said to provide the MCU with stable instruction
clock of 5 MHz [2].

The program algorithm is easy to understand. The MCU is initially set to
expect a rising edge of the signal. Should this edge occurs, an external interrupt is
triggered and the interrupt flag is switched on by the hardware. It is developer’s
responsibility to clear this flag each time when it is necessary otherwise it would be
impossible for the MCU to trigger another interrupt. Having had the rising edge
detected, the program code sets the interrupt flag off, starts an internal timer, and
then adjusts the corresponding register so as to expect falling edge of the signal. In
case of falling edge arrival, the interrupt flag is cleared again, the timer is stopped,
and the program is set to expect the next rising edge. The timer value is converted
into milliseconds and then it is cleared.

Fig. 1. Basic rectangular pulse definitions used in the article

On the other hand, the source code is a bit more complicated. It is
published in the appendix section in the present paper. The code starts with setting
port B as digital output and disabling the analog comparator. The former action is
solely necessary if the application is to display results on a liquid crystal display
(LCD). What follows is a function setting the capture ability of the MCU (see
‘configureCapture’ function in Appendix). For the present study, one out of two
available Capture-Compare-PWM modules has been chosen, i.e. the CCP1. The
external impulse is fed to RC2 pin which is why this pin is set as input.

The capture mode is initialized by setting the CCP1CON register. The most
significant four bits remain unused in capture mode. The least significant four
bits CCP1M<3:0> are set to 0b0101 so that the MCU expects the rising edge.
Then, the Timer3 module is picked as a counter. It consists of two eight-bit
registers TMR3H and TMR3L. Their values are eventually concatenated to
obtain the pulse

123



width. As a matter of fact, in capture mode, two timers are available: Timerl and
Timer3. Neither of them should be chosen in preference to the other because both
offer same input clock prescale values. These are set in corresponding control
registers. In the present case study, the chosen prescale value for Timer3 is 1:8
which value is selected by setting the T3CON register accordingly [2]. What
follows next is enabling the capture (CCP1IE_bit), peripheral (PEIE_bit), and
global (GIE_bit) interrupts. Setting these bits is obligatory so that the ISR may
happen. At the end of initialization function, Timer3 and CCP1 storage registers
are cleared understandably. In addition, the Timer3 enabling bit (TMR3ON_bit) is
set at zero for security reasons.

The ISR (see ‘checkExternallnterrupt’” function in Appendix) is triggered
by the impulse rising edge first in accordance with what is written in the
initialization function. If interrupt occurs, hardware sets the CCP1IF bit to 1. As it
was mentioned earlier, it is mandatory for this bit to be cleared in the ISR. The next
part of the function relies on the developer’s resourcefulness. An integer counter
variable lets the MCU tell the upcoming edge apart, i.e. whether the edge is rising
or falling. The counter solely gets two values, i.e. either 1 or 2. Each time the
interrupt has been triggered, the counter is augmented by 1, yet it is cleared after
the falling edge. If the counter equals to 1, it is the rising edge coming. This is the
right moment to switch the Timer3 module on and set the CCP1M<3:0> bits to
0b0100 so that the MCU no longer looks for the rising edge but the falling. If the
counter equals to 2, the falling edge is said to arrive, the CCP1M<3:0> bits are
reverted to rising edge, and Timer3 is stopped. Also, a flag is set in order to
indicate that Timer3 store registers contain the pulse width. When the capture
mode is changed, a false capture interrupt may be generated [2]. The developer has
to clear the CCP1IF bit once again. This is a special feature solely observable in the
discussed MCU. The reader is referred to “if condition’ in ‘checkExternalinterrupt’
function, Appendix section.

The pulse width is further converted to seconds in ‘get_timer3_capture’
function. The function is indispensable because Timer3 module solely stores
integers between 0 and 65535. Thus, the pulse width duration is obtained in
accordance with following formula:

1
Tpuse = (CCPRIH <<8+CCPRIL)* —————, [s]
% Prescaler
where Prescaler = 1/8, Fosc/4 = 5E+06 is instruction clock and CCPRL1 register
stores a copy of TMR3 register value. In the end of the function both TMR3 and
CCPR1 registers has to be cleared so that a new count may begin. The obtained

result unit is seconds. It is wise to remind that both counter and flag variables must
be cleared after each falling pulse edge.

124



3. Results

The proposed circuit has been put to the test as follows. A sequence of
rectangular pulses with frequency 50 Hz and pulse duration 1.75 ms enters the
CCP1 pin. The obtained results after simulation by means of Proteus VMS are
visible in Fig. 2. On the upper left side of the figure is shown a dialog panel for
adjustment the input signal parameters. On the bottom side, the result is written
down onto a LCD. Both values (1.75 ms) coincide in practice.

Fig. 2. Project simulation in Proteus VMS

4, Discussion

The proposed test case resembles a PWM signal which is widely used in
remotely controlled vehicles for hobbyists. The MCU successfully measures the
pulse width. The result is visible on the LCD in Fig. 2 and shows that the error is
less than 1 %. This error may grow bigger however if the timer resolution get low.
It is highly up to the program developer to decide. Nevertheless, the proposed
solution might be used onboard an UAV as an actuator apart from standard articles
sold off-the-shelf in hobby RC stores.

In addition, this article might be found useful by developers who are less
experienced in the interrupt technique.

125



References

1. http://www.electronics-base.com/useful-info/software-related/90-polling-vs-interrupt
2. PIC18F2455/2550/4455/4550 Data Sheet, Microchip Technology Inc., 2006.

Appendix: Source code, MikroC Pro for PIC v.6.6.3

unsigned int timer3_register; // stores timer3 register value
unsigned int capture_register; // stores capture register value
float period; // stores the periodic
time

unsigned short counter = O0; // edge counter (rising and
falling)

bit flag = 0; // if two edges are detected, frequency & period might
be calculated

void cofigureCapture(void) {

falling

1;

}

void ge

126

TRISC.F2 = 1; // input pin

// Capture mode, every rising edge; 1 —
edge

CCP1M3_bit = 0; CCP1IM2_bit = 1; CCP1M1_bit

// Pick up Timer3 as a resource

T3CCP2_bit = 1; T3CCP1_bit = 1;

// prescaler 1:8

T3CKPS1_bit = 1;

T3CKPSO_bit = 1;

CCP1IE_bit = 1; // enable capture interrupt
// enable all interrupts

PEIE_bit = 1;

GIE_bit = 1;

// reset high & low bytes of timer3 & captu
TMR3H = 0; TMR3L = O;

CCPR1H = 0; CCPR1L = O;

TMR3ON_bit = 0;

flag = 0; // might be omitted

return;

t_timer3_capture(void) {

rising edge; 0 —

= 0; CCPIMO_bit =

re registers

//get high & low bytes of timer3 & capture registers

timer3_register = (TMR3H<<8) + TMR3L;
capture_register = (CCPR1H<<8) + CCPR1L;
//calculate period

period = (Float)(capture_register + 1);
period = (Float)period * (4);

period = (Ffloat)period * 1/20000000;
period = (float)period * 8;

//reset timer3 & capture & period
TMR3H = 0; TMR3L = O;
CCPR1H = 0; CCPR1L = O;


http://www.electronics-base.com/useful-info/software-related/90-polling-vs-interrupt

return;

void checkExternalInterrupt(void) {

if (CCP1LIF bit == 1) { // if capture interrupt occurred
(rising edge detected)
CCP1IF_bit = 0; // reset capture interrupt flag
TMR3ON_bit = 0; // stop timerl
counter++; // counter increment by 1
if (counter == 1) { // if cnt = 1 then rising edge

has been detected

TMR3ON_bit = 1; // timer3 start counting
// look for falling edge

// CCP1M3_bit = 0; CCP1M2_bit = 1; CCPIM1_bit = O;
CCP1MO_bit = O;
CCP1IF_bit = O; // obligatory for picl8f2550
only
} /77 if
if (counter == 2) { // if cnt = 2 then falling edge

has been detected
TMR3ON_bit = O; // stop timer3

flag = 1; // set this flag to indicate that
pulse duration has been counted

// look for rising edge

// CCP1M3_bit = 0; CCP1M2_bit = 1; CCPIM1_bit = O;
CCPIMO bit = 1;
CCP1IF_bit = 0; // obligatory for picl8f2550 only
Y /7 if
} /7 if
return;
}

void interrupt(void) { checkExternallnterrupt(); }

void capturePulseWidth(void) {

if (flag == 1) { // if pulse duration has been
counted
get_timer3_capture(); // go and get results
counter = 0; // then reset rising edge
counter
flag = 0; // also reset this flag
} /77 if
return;
}
void main(void) {
TRISB = 0; // all output
CMCON = 0x07; // disable comparators
ADCON1 = 0b00001111; ADCONO = 0b00101100; // all digital
cofigureCapture();
while(1) { capturePulseWidth(Q); }
return; }

127



N3MEPBAHE HA HINPOYNHATA HA TIPABOBI'BJIEH
EJHOIOJIAPEH UMITYJIC C IOMOIITA
HA MUKPOKOHTPOJIEP PIC18F2550

K. Memooues

Pesrome

B HacTosimus qoKiIaz ce pasriex/aa Mmoaxo 3a U3MEepBaHe Ha IHPOYNHATA
Ha TIpaBOBIBIIEH HMIyJIC upe3 Mmukpokorporep PIC18F2550. IlpenmoskeHoTo
pellieHre MOXKe Jia C€ H3IMOJI3Ba B aBTOMATHU3UpPaH MpOIeC, KbIETO MHKPO-
KOHTPOJIEPBT B3e€Ma pellleHHe Bb3 OCHOBA HAa M3MEpEHaTa BEJIUYMHA, HApUMEp
Ipy IIMPOYMHHOUMITYJICHA MOAYJauus. BB3MOXHO € YCTpPOWCTBOTO Ha ce
WHCTaNHpa Ha O0opja Ha Oe3MMIIOTEH JIeTaTeleH amapaT. B ciaydas KOHTpOJIephT
YeTe [IMPOYMHHOUMITYJICHO MOJAYJIHpAaH CHTHAJN, I[I0JaBaH Ha BXOAa OT
pagvonpreMHHKa M Bb3 OCHOBA Ha HW3MEPEHUs KOC(QUIMCHT Ha 3aIlbjBaHe
3aﬂeﬁCTBa UBIIBJIHUTCIICH MCXaHU3BM.

CrienmaTHO BHUMaHHE € OTJIIEJNICHO Ha O0COOEHOCTHTE Ha mporpamara 3a
MUKPOKOHTpoJiepa. JOMBJIHUTEHO € HampaBeHa KOMIIOThPHA CHUMYJIAlus.
Uznonzsanusar codryep e MikroC Pro for PIC u Proteus VMS. TlokasaHo e, 4e
MPEUIOKEHOTO pelieHne (QyHKIMOHUPa ChC 33J0BOJUTENTHAa TOYHOCT. KombT Ha
MporpaMara ChIio € MyOIHKyBaH B HACTOSIIIHS JJOKIIAT.

128



	3_Aerospace Research in BG_28.pdf
	10_Metodiev_R
	Bulgarian Academy of Sciences. Space Research and Technology Institute.





