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Abstract

The method of the moving data window has been widely used for tracing the
behavior of time series on a large scale where the estimation of the central point of the
window is based on the Method of the Least Squares (MLS). However, the ordinary MLS
minimizes the scatter of all n squares of the deviations and it is extremely sensitive to strong
outliers. One alternative is the Method of the Least Trimmed Squares (MLTS) of Rousseeuw
that minimizes only the left part of the squares of the deviations, ordered increasingly,
including at least h = n/2+1 data points. Strong outliers may be present in the right part of
this order, but the MLTS ignores them. Thus the MLST has an asymptotic robustness of 50%
against strong outliers in the data, while the robustness of the MLS is definitely 0%. Apart
from that the MLS ordinary regression is derived by direct formulas with respect to the
coefficients while the MLTS robust regression is derived by testing all the available patterns
of possible solutions: single data points in 1D case, lines through pairs of points in 2D
case, planes through triplets of points in 3D case, etc. The pattern that has the shortest
MLTS scatter is revealed as a solution. The main disadvantage of the MLTS is that in 2D,
3D, etc. it needs huge computing time in order to check all the available patterns. It may
take a few million — billion times longer than it takes for the calculation of the respective
ordinary regression. This work presents (i) a simple fast algorithm for the MLTS that omits
progressively numerous patterns and may reduce the computing time a few thousand —
million times. It presents also (ii) the capability of the MLTS applied in processing time
series, especially with respect to the task of tracing stellar light curves in the presence of
flares and tracing continuum stellar spectra in the presence of many spectral lines. Here we
deal with equally spaced time series, but the method can be applied for all cases as a
general solution.
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1. Smoothing by the Method of the Moving Polynomial (MMP)

A time series is an ordered discrete sequence of values that are
dependent on time or other argument. Examples of a time series are a stellar
variability curve, a stellar spectrum, a photometric section of a galaxy
image, an index of a geophysical activity, etc. Usually the procedures
applied on a time series aims (i) to decompose it into a trend and short scale
variations, or (ii) to forecast some intermediate or further values of the time
series. In many real cases the noise contamination disturbs the time series
and at least a preliminary smoothing for suppressing the noise is needed.
Theory and recommendations for time series smoothing are given in many
books [1,2,3,4], as well as in many contemporary manual.

A common and widely used method for suppressing the noise is
based on the so called moving data window. Let us define a time series 1z,
k=1, ..., nand a data window of size w. We suppose w is an odd number
and 1 << w << n. Then the smoothing method works, as follows. The center
of the data window moves along the time series step by step along the input
time series. For every fixed position of the window, centered on the data
point k, a numerical method uses the data in the window and estimates a
“better” value <z, corresponding to zx . In the output time series <z>
replaces zy . Usually the estimation of zy is based on the Method of the Least
Squares (MLS) and the estimation <z,> is the central value of a regression
polynomial of a low degree p, Fy(z), describing the large scale trend of the
window data: <z,> = Fy(z«). In the simplest case, p=0, the estimation <z>
is the average of the data in the window. In other cases, a regression line,
p=1, a regression quadratic polynomial, p=2, etc., are used in the sense of
an average line, an average quadratic polynomial, etc. Let us call this
common method “Method of the Moving Polynomial” (MMP).

The MMP based on the MLS produces an output (a result) time
series that has been smoothened at a scale shorter than the window size. At a
fixed window size w, when the polynomial degree p increases, the
smoothing effect decreases, i.e. more details stands out in the output (result)
time series. Otherwise, at a fixed polynomial degree p, when the window
size w increases, the smoothing effect increases too.

In the case of equally spaced data, explored here, a significant
simplification of the calculations of the MLS estimation of the current value
(the central value of the window) exists: (i) the regression coefficients ahead
the odd powered polynomial terms are definitely zero and (ii) the MLS
procedure may be changed by convolution of the time series with
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preliminary calculated kernel coefficients [5]. Formulas for deriving the
coefficients in 1D and 2D cases for p=2 and p=4, as well as an application
for smoothing of digital image of a galaxy has been published [6]. So,
excluding the average (with p = 0) that causes too strong smoothness, the
simplest tracing of a complicated time series may be based on the MLS
parabola (with p = 2): <z> = bg + by.t2.

Theoretically, the MLS is applicable over a system of statistical
assumptions. The main of them is that the observed values of the dependent
variable (z) are subject to errors with zero mean and a finite variance,
common for all observations. On the contrary, if only one strong outlier is
present among the data, the MLS is practically useless. The problem is very
serious (i) when the number of outliers is large, e. g. 40% of the data, (ii)
when the number of the arguments (independent variables) is larger than
unit when the visual control is almost impossible, and (iii) in time series
processing or image processing, when the program code should be able to
ignore automatically numerous outliers.

Furthermore, the MMP (based on the MLS), being a linear
transformation of the time series, saves the “total energy” (entropy, self-
information) of the data. For this reason the strong impulses in the data
spread and disturb the behavior of the time series at scales compatible with a
double-sized window. The high sensitivity to impulse noise is the most
fundamental disadvantage of the MLS. Though, the MLS is the best (i)
when the supposed intrinsic behavior of the time series at large scales is
simple (naturally smooth) and (ii) when the noise distribution is close to the
normal distribution. Otherwise, a method that is robust against numerous
strong outliers is urgently needed.

A wide spread robust method gives an estimation of z, as the median
of the values in the moving data window [7]. The median is a robust
estimation of the population mean with an asymptotic robustness of 50 %
against outliers. Again, when the window size increases, the smoothing
effect increases too. However, the median method saves sharp edges and
produces result time series which are jagged at the shortest scale. For these
reasons an additional smoothing by the MMP after the median smoothing is
recommended. Unfortunately, simple methods for building median line,
median plane or median are not certain.

It is very attractive to have a smoothing method that combines the
flexibility of the MLS and the robustness of the median smoothing.
Moreover, while the MLS estimates average means, average lines, average
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planes, average polynomials, etc., this method has to estimate mode means,
mode lines, mode planes, mode polynomials, etc.

The application of the MMP presented here is based on an extremely
robust method, described in Section 2. Because of its specific character the
MLTS may take millions — billions times longer in respect ot the MLS and
for this reason the MLTS is not widely spread. Therefore in Section 3 we
present a simple fast algorithm for applying of the MLTS that may reduce
the computing time thousands — millions of times. In Section 4 we apply the
MMP based on the MLTS to trace the stellar light curves with flares and in
Section 5 we apply this approach to trace the continuum in the stellar
spectrum with many lines.

2. The Method of the Least Trimmed Squares (MLTS)

The ordinary method of the least squares (MLS) is based on the
principle of the least squares, introduced by Legendre and Gauss at the end
of XVIII century. The MLS estimator minimizes the sum of all n squares of
deviations. Its two most important particularities are: (i) the estimations are
presented by formulas for direct calculation of the coefficients and their
standard errors (advantage) and (ii) the estimations have zero robustness
against outliers (disadvantage).

Different improvements of the MLS, aiming robustness against
impulse noise, are proposed in the scientific literature, but we concentrate
on the extremely robust method based on another principle. It has been
introduced by Peter Rousseeuw in 1984 [8] and it is known as “Method of
the Least Trimmed Squares” (MLTS). The principle of this method that
changes the principle of the MLS is: the best estimation minimizes the sum
of the left half of the squares of the deviations ordered in an ascending
order (ordered by the increasing), no less then h = n/2+1 for n data points.

The MLTS differs very significantly from the MLS in two respects:
(i) The estimations are not to be presented by formulas for direct calculation
of the coefficients and the standard deviations of the coefficients. For this
reason any estimation should be made testing numerous patterns and this
can be extremely time-consuming; (ii) The MLS estimation has an
asymptotic robustness of 50% against outliers. For this reason practically up
to 40% of the outliers do not change the estimation. Beside this, while h
increases, the robustness of the MLTS decreases. In the case of h = n the
estimation through the MLTS coincides with the estimation through the
MLS. However, if h < n/2+1, the MLTS may recognize wrongly a small
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part of the distribution as a keeper of the mode value. In the present paper
we explore only the number h =n/2+1.

The MLTS is widely discussed and illustrated by Rousseeuw &
Leroy in 1987 [9]. Some astronomical applications have been presented as
illustrations of the power of this method by Georgiev in 2008 [10].

The simplest application of the MLTS is the estimation of the mode
mean of a 1D population. Let us take the sample z, j =1, ..., n into
account. Then the MLTS works, as follows.

0. It takes into consideration consequently each value z;, regarding it
as a possible mode estimation. (The number of all checked points is N =n.)

1. It derives for every z; all the n squares of the deviations Az,-k2 =
=(z-z)% k=1,..,n.

2. It sorts the values AZJ‘kZ increasingly and trims the first h=n/2+1 of
them, ignoring the others.

3. It calculates the sum S; of the trimmed squares of deviations and
uses this sum as a label of the goodness of the data z; as an estimation of the
sample mean value;

4. 1t announces the value of z;. which has the shortest sum S; to be
the estimation of the mode of the 1D population;

5. It announces the value s = 2x[S;/(h-1)]*? as an estimation of the

standard deviation of the population. Multiplying by 2 is necessary for
compatibility with the standard deviation estimation, that is based on half
the deviations, with such an estimation by the MLS, that is based on all the
deviations.

Figure 1 show an example composed of 138 measurements of the
atmosphere extinction of the Rozhen NAO with a standard error of a single
value of about 0.01 mag (about 1%) (courtesy of Dimitrov [11]; see for
details Fig. 5 in [10]). Three estimations of the population mean are shown
as average, median and mode. Note that the derivation of the MLTS mode is
based on a cleat mathematical principle and it does not need a histogram
presentation of the data.
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Fig. 1. Comparison of the positions MLTS mode, median and MLS average on a
random value with a heavy right tail: atmosphere B-extinction over the Rozhen
NAO. The mode estimation by the MLTS does not need visual (histogram)
presentation of the data

Further, searching for the mode in 2D, 3D, etc., discrete
distributions, MLTS checks every point (vector) r;, as a possible mode
estimation in 2D, 3D, etc. space. MLTS applies the same scheme, as in the
1D case, using the respective squares of deviations Arjk2 = In- nd% k=1,...
, N; The number of the checks in these applications is always N = n.

The MLTS is designed mainly to derive the robust (mode) regression
line <z> = by + by.t. In this case MLTS checks the lines through all pairs of
points as a possible solution:

0. It derives the parameters by and b; of the line z = by + by.t
through every pair of points.
The number of checked pairs (combinations) is N = n.(n-1)/2.

1. It derives all n squares of deviations Azjk2 (for each pint k, k=1,...,
n, of the sample) with respect to every checked line j, j=1, ..., N.

Furthermore the MLTS follows the steps 2 — 5 in the previous
example and derives the line that is best among the available line patterns.

Searching for 2nd degree (mode) regression curve (or mode
regression plane <z> = a.x + b.y + c¢), the MLTS follows the same scheme,
checking every triad of points. Than the number of combinations is N= n.(n-
1).(n-2)/6. In the case of 3 arguments MLTS checks every four points and
the number of the combinations is N = n.(n-1).(n-2).(n-3)/24, etc.

In this work we show applications of fitting or smoothing of time
series or data rows using four kinds of low degree polynomials:

(2.18.) <z> =Dy + by.t

(2.1b) <z>=bg + by.t?

(2.2)  <z>=bhg+ byt + by.t?

(2.3)  <z>=bg+ byt + b t?+ byt
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Figure 2 shows examples with light curves (LCs) of the variable
stars V 425 Cas and KR Aur that contain irregular fast light variations
(flickering). The LC are obtained with the 2 m telescope of the Rozhen
NAO, [12] and [13], with 162 and 64 data points, respectively . The levels
of the MLS average, median and MLTS, as well as the regression
polynomials of 2" and 3™ degree, derived by the MLS and MLTS, fit all
data.

In Fig.2a the general trend of the data follows the shape of a 2™
degree polynomial. By this reason both polynomials of the type (2.2) are
closely situated. In this case the MLTS does not show some advantages.
However, in Fig.2b the general (calm) trend follows an approximately
horizontal line and both 3™ degree polynomials of the type (2.3) are
essentially different. The MLS polynomial is deviated by a large flare, while
the MLTS polynomial recognizes and elucidates the horizontal trend,
ignoring the flare. In this case the MLTS shows clearly its robustness against
outliers.
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Fig. 2. Fitting of light curves of flickering stars with comparison of the MLTS
mode, median and MLS average (horizontal lines), as well as of polynomial curves
of 2" degree (2.2) in the case a and 3" degree (2.3) in the case b. In the case b The

MLTS mode line or the MLTS 3™ degree polynomial may be used for detach of a
residual curve and an estimation of the energy of the flares

3. Simple fast method for the application of the MMP though
MLTS

Searching for the best polynomial, the MLTS must check a large
number of combinations. This number increases fast with the increase in the
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polynomial degree: N ~ n? for the 1% degree (2.1a) or (2.1b), N ~ n® for the
2" degree (2.2), N ~ n’ for the 3 degree (2.3) etc. That is why the
building of 3" degree polynomial by the MLTS over 100 points needs to test
~15.7 x 10° combinations, but over 1000 points it needs to check 44.2x10°
combinations (Fig.3a, upper dashed line). Such tasks may take decades of
computation time.

However, such a consecutive test of millions — billions combinations
is not necessary. The practice shows that the number of the combinations
that have to be checked in order to obtain an optimal result may be reduced
thousands — millions times. In particular, a random number generator may
be used to trim a high enough number of arbitrary combinations, but the
simplest way is omitting numerous combinations, by attributing smaller
importance to them. The simple fast method, described below, is based on
omitting the neighboring combinations and it needs data that is preliminary
sorted in an ascending order by argument t. When the number of arguments
is larger than one, the data must be sorted in an ascending order by the first
argument, and if need by the second, etc., arguments.

Let us concentrate on the simplest case (2.1a) or (2.1b) with a full
number of combinations (pairs of points) N = n(n-1)/2. All such
combinations may be counted and tested by the following C-code

(3.1) N=0; for (i=0; i<n-1; i++) for (j=i+1; j<n;j++) { N++;
/* Here is the place of the code that tests and labels the line patterns */ }

However, the neighboring pairs of points, numbered as (i), like
0,2) (1,2), (2,3), etc., (0,2), (2,4), (4,6), etc., or, generally, (0,0+m), (0+ m,
0+2 m), (0+2m, 0+3m), etc., may be omitted as close neighbors and less
useful. Generally, beginning with the point numbered 0 and using only the
pairs of points that have difference divisible bay m between their numbers,
we may thin out the number of combinations about m? times. We could use
all the points, testing also for the cases (k, k +m), (k + m, k +2 m), (k +2m,
+3m), etc., for k =0,...,m, i.e, about m more times . So, such thin out
procedure must be applied by the C-code

(3.2) M=0; for (k=0; k<m; k++) for (i=k; i<n-m; i+=m) for (j=i+m; j<n;

jt=m) { M++;
/* The code that tests and labels the line patterns must be written here */ }
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Here M is the number of the used combinations. Thus the reduction
gain becomes (N/M) ~ m in the case of (2.1a) or (2.1b), (N/M) ~ m? in the
case of (2.2) and (N/M) ~m®in the case of (2.3).

For example, in the case of n = 13 points, numbered as 0, 1, 2, ...,
12, p=1 and m = 1,we have to check the full number of combinations, N =
78. However, if we use m = 3, we have to check M ~ N/3 combinations.
Really in respect to (3.2) the combinations are 21. These combinations are
shown in Fig. 3.

(0,3) (0,6) (0,9) (0,12) (3,6) (3,9) (3,12) (6,9) (6,12} (3,12)
(1,4) (1,7} (1,10) (4,7) (4,10) (7,10)
(2,5) (2,8 (2,11) (5,8) (5,11) (8,11)

Fig. 3. Inventory of the combination used with applying of the fast method for
MLTS regression line (p = 1) on n=13 points with thin out step m =3. The number
of these ““good”” combinations is M =21, while the number
of all combinations is N = 78

Here we present a method for automatic progressive increase of the
thin out step m in dependence on n. The increasing is shown in Fig.4a. The
user must supply a suitable supporting number, f.e. np= 21. In that case, if n
< ny, the computer program will use all combinations, corresponding to n, as
in the general case (3.1), with m = 1. If the number of points in the current
application of the MLTS occurs n > np, a suitable thin out step of m > 1 will
be derived and used, so that it reduces the number of the used combination
asin (3.2).

The C-code, given below, shows the automatic derivation of m, in
dependence of n and a supporting number supplied by a user ny  with a
respective number of combinations Ny, derived by (3.1). This code
increases the thin out step m (Fig. 4a) and defines the number of checked
combinations M to be more and more large than No, but with enough slow
increasing (Fig.4,b, thick graphs).

/* Here is the part of the program that calculates No from ng though
(3.1) */
(3.3) M=0; m=1; if(n>n0) {
N=(n0-1)*n0/2.; for (I=n0; I<=n; 1+=2) {
M=0; for (k=0; k<=m; k++) for (i=k; i<l-nd; i+=k) for (j=i+k; j<I,
J+=K) { M++;
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if (M>NO && I/k>2) { NO=M; m++:} } }

The result is the thin out step m that will be used for C-code (3.2), as
well as the preliminary derived number M of the combinations to be used. In
this approach the thin out step m increases slowly but progressively with the
increasing number of points n. The reduction gain N/M increases rapidly.

Figure43a shows the increasing of the thin out step m number in
dependence on n, after the code (3.3). Figure 4b presents the slow increase
of the used combinations M (thick jagged curves) and the fast increase in
gain (N/M) (jagged curves at the bottom down corner).

In the examples given in Fig.4 the user-supplied supporting number
no, that starts the increase of m and the increase of N/M, is 75, 32 and 22,
respectively. There in the case of n=1000 points the thin out step tends to
m=100 (Fig.4a). In the same time in the cases of polynomials of 1%, 2" and
3" degree the gain N/M is about 100, 3000 and 110 000 times, respectively
(Fig. 4b).
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Fig. 4. a. Increasing of the thin out step m in dependence on the data number n
and user supplied beginning number no, where the numbers 1, 2 and 3 correspond
to the models (2.1), (2.2) and (2.3). b. Increasing of the full combination number N

(dashed lines), used number of combinations M (thick graphs) the gain N/M
(graphs in the right-down corner) in dependence on n. The numbers correspond,
as in a, to polynomials of 1% (1), 2™ (2) or 3" (3) degree

Figure 4 shows that the proposed fast method, based on omitting of

combinations, makes the MLTS and the MMP based on the MLTS really
useable. Some applications are given below.
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Fig. 5. a. Results of tracing of a light curve of the cataclysmic star KR Aur by
various methods, signed in the picture. In the cases 2 and 4 the regression curve
over all points is build. In the other 3 cases different smoothing methods with
window size 71 pix (points) are used; b. Residual light curve with respect to the

MMP smoothing by the MLTS (2.3) in a. (thick curve)

4. Tracing a large scale trend in stellar light curves with
flickering

The flickering of symbiotic and cataclysmic stars produces

complicated light curves where both large scale trends and short scale

variations are of astrophysical interest.
Figure 5a shows a light curve (LC) of the cataclysmic variable KR

Aur with 148 points (60 cm telescope of the Belogradchik AO, [13]). A
significant sink of a 2-fold light decrease and duration of about 15 min
dominates in the LC. The general behavior of the LC is fitted by a 2™
degree polynomial (2.2) through the MLS and through the MLTS. Note that
the MLS polynomial is affected by the sink of the LC and it has a concave
curve, but the MLTS polynomial ignores the sink and shows a more realistic
convex curve. The LC is also smoothed by the MMP with a window size 71
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pix (points) through the MLS (2.1b), as well as through the MLTS (2.2) and
MLTS (2.3). (For visualizing of the jaggedness of the MLTS result
additional smoothing by the MLS has not been applied.)

The last mentioned smoothing may be considered the best and useful
for deriving the “energy” of the sink: Figure 5b shows the residual LC with
respect to the MMP, made though the MLTS (2.3).
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Fig. 6 a: Results of smoothing of the LC of a strong and continuous outburst of EV
Lac with a window of 55 pix (points) by 2 methods, signed in the picture.
b. Residual LC with respect to the MMP smoothing by the MLTS (2.3)

Figure 6a represents the LC with 600 points of a remarkable power
outburst of the active red dwarf star EV Lac (60 cm telescope of the Rozhen
NAO, [14]). The general photometric behavior of the outburst is presented
by smoothing with a window size of 55 points (275 min) by use of the MLS
and the MLTS of type (2.1b). Note that the MLS smoothens and spreads the
local short outbursts, while the MLTS ignores them.

Figure 6b shows that the residual LC with respect to MLTS is
smoothened. (Additional LMS smoothing of the MLTS smooth is not
applied). The residual LC elucidates clearly at least three well pronounced
short time outbursts with a duration of 100 — 200 min. The applied MLTS
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method gives possibility for deriving the energy of the main outburst as well
as the energy of the flickering outbursts.

5. Tracing the spectral continuum among many spectral lines

The deriving of the continuum of a stellar spectrum containing
numerous spectral lines is an important and difficult task. The MMP based
on the MLTS gives a reasonable solution.

Figure 7a presents a part of the spectrum of the AM star HD 033254
through 900 data points with a step of 0.1 A (2 m telescope of the Rozhen
NAO [15]). The continuum seems to be linear and the regression line, build
by the MLTS (2.1b), confirms clearly this impression. The respective LTS
regression line is deviated down by the absorption spectral lines and it is
useless. Furthermore, the smoothening by a window size of 71 pix (points)
through the polynomial (2.1b) is applied by MLS and MLTS. The MLS
curve twists accounting for the intensities of the lines, but the MLTS curve
follows confidently the line of the continuum.
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Fig. 7. a: Results of processing of a spectrum of the Am star HD 033254 by various
methods, signed in the picture. In 2 cases, signed by “full”’, a regression line over
all points is built. In the rest cases smoothing window size of 71 pix (7.1 A) is
applied; b. Residual light curve with respect to the MMP smoothing by the MLTS
(2.1b)
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Figure 7b shows the residual spectrum with respect to the MLTS
smooth and the equivalent widths of the spectral lines may be easy derived.

Figure 8 shows the central part of the spectrum, given in Fig.7.
Smoothing with 2 different window sizes is applied and the results are
practically identical. These examples show that the window size is not too
crucial.
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Fig. 8. Smoothing of the central part of the spectrum of HD 033254, given in
Fig.7a by the MMP (2.1b) through MLS (dashed curve) or MLTS (thick curve) with
a window of 51 pix or 91 pix. In both cases the MLTS (2.1b) follows the majority of

the points, which are placed in the band of the continuum

Figure 9 shows an attempt for tracing the continuum in the
complicated spectrum of the star HD 178449 with 900 points (2 m telescope
of the Rozhen NAO, [15]). A MMP smoothing with a window size of 401
pix is applied through the MLS or MLTS. The MLS polynomial follows the
middle part of the band of the data. On the contrary, the MLTS attempts to
find and to follow the trend of some majority of points. This attempt is
about to be successful up to 6000 A, but the right tail of the data is too short
and the derived trend occurs broken. Essentially, this attempt for tracing
some spectral continuum is not successful.
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Fig. 9. Results of smoothing the spectrum of the star HD 178449 by application of
a very large window of 401 pix (points). The right edge of the MLTS curve is
broken because the spectrum is complicated and short

Figure 9 shows the significant difference between the results of
MMP smoothing by the MLS or by the MLTS. It elucidates also the fact that
the result of the MLTS smoothing cannot be easily predicted.

In the end, note that in the last example the computing time for the
MLTS smoothening by means of the C-code (3.2) with the implementation
of the algorithm (3.3) took about 10 min (roughly one second per data
point), while when applying of the direct method (3.1) only the computing
time should be about 100 times larger.

Conclusion

The main known advantage of the MLTS (Rousseeuw, 1984,
Rousseeuw &, Leroy, 1987) in comparison with the MLS is its extremely
high robustness with respect to outliers. Really the MLTS is able to ignore
up to about 40% of the data, providing with a “mode” regression model.
However, this method is not widely spread even when strong outliers are
present because of its extremely high time consumption.  This is
understandable. When the data amount is not large, the user is able to reject
the outliers that cannot be taken into consideration and to apply the ordinary
MLS. However, in the case of many outliers or of many consecutive
applications of a chosen regression model in the presence of outliers, the
MLTS may be recommended. Apart from the examples given here, the
MLTS may be useful in image processing and galaxy photometry.
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We must note that we call the MLTS estimation to be “mode” but it
is not just the mode, it must be slightly shifted toward the ignored large
deviations. We consider this shift is very small.
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POBACTO M3ITTA’KIAHE HA PEJTOBE OT JAHHU YPE3 ITPOCT
BbP3 AJI'OPUTDHBM. IIPEKAPBAHE HA TPEHJA IIPU 3BE3/IEH
OJIUKEPUHI' U KOHTUHYYM I1PA 3BE3/IEH CIIEKTBHP

IIB. I'eoprues
Pesrome
MeTonbT Ha ABMKEIIMS C€ MPO30PEL] OT JaHHU CE U3I0JI3BA IIUPOKO

IpU TpacHpaHEe Ha eIpOMaIiadHOTO MOBEJACHHWE HAa BPEMEBU PEIOBE, KAaTO
OLICHKATa Ha IEHTpaJHaTa TOYka Ha mpo3opena ce Oasupa Ha Merona Ha
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Haii-mankute kBaaparu (MHK). O6aue, oOuuaiinust MHK munummsupa
pa3celiBaHETO Ha BCHYKUTE N KBaJpaTH Ha OTKJIOHEHUS U 3aroBa €
€KCTPEMAaJIHO YyBCTBUTEJIEH KbM CHUJIHO OTKJIOHSBAIlM c€ JaHHU. EnHa
anTepHathBa ¢ MeToabT Ha orOpanuTe Han-maiku kBaapatd (MOHK) na
Pycro. Toil MuHMMHM3uMpa camMO JiABaTa 4YacT Ha KBaJpaTUTe Ha
OTKJIOHEHHSITA, HApEJCHU [0 HapacTBaHe, BKIOUBaiku moHe h = n/2+1
JaHHU. B ngcHaTa yacT Ha HapeAEHUTE KBapaTu Ha OTKJIOHEHUATA MOXKE Aa
MPUCHCTBAT MPOU3BOJIHO TojieMU KBajpaTu Ha oTkioHeHus, Ho MOHK ru
urnopupa. Taka MOHK wuma acumnrornuna 50 % poGacTHOCT crpsiMo
CHUJIHO OTKJIOHSBAIlM C€ JaHHW, Jokaro pobactHocrra Ha MHK e
onpeneneHo 0 %. Obaue, nokato koeuuueHTHTe Ha obuuaitnara MHK
perpecusi ce u34MCIsABaT Ype3 aHaJIUTHYHO u3BeaeHU popmynu, npu MOHK
TOBa CTaBa 4Ype3 TECTBAHE Ha JOCTBIIHU 0Opa3ly Ha Bb3MOXKHU PELLCHHUS.
TaknBa ca: B enHOMepHus ciaydail — BCsKa JaHHA; B nByMepHuUs ciydad —
IIpaBara Ipe3 BesAKa JIBOMKA TOYKU; B TpuMepHUs cilydail — paBHUHATA [IPE3
BCAKAa Tpoiika Touku U T.H. OOpazeusnt, KoiWTOo MMa Hai-manko MOHK-
pasceiiBane ce n3bupa 3a pemienue. [aBuusaT Henoctarbk Ha MOHK e, ue B
2D, 3D u T.H. cilydau TO# ce Hy)XK[Iae OT OTPOMHO M3YUCIUTEITHO BpeMe 3a
Jla TIPOBEpPHU BCUYKHM JOCTBIHM 0Opa3nu. ToBa MoOxe Aa OTHEME MUIMOH-
MWIMApA NOBTU IIOBEYE KOMIIIOTBPHO BpPEME OTKOJIKOTO BPEMETO 32
U3uKCIIsIBaHe Ha oOMvaiiHa perpecus. B rasu padora e npencraset (i) mpoct
OBbp3 aJTOPUTHM, KOWTO TMPOIYyCKa CHCEAHM KOMOHMHAIMM C MPOTPECUBHO
yBeJIMYaBalla Cce CThIKAa M MOXE Ja peAylupa H3YMCIMTEIHOTO BpeMe
Xuisiia — MuIHoH bTh. [IpencraBenu ca u (i) Bb3MokHOCcTUTEe HAa MOHK
IpY M3MIAXJaHe Ha peoBe OT JaHHU B JBa IpUMeEpa — 3a TpacUpaHe Ha
KpuBaTa Ha OJsiChbKa Ha 3Be3Ja B MPHUCHCTBHETO Ha W30yXBaHUS M 32
IpeKapBaHe Ha KOHTHMHyyMa Ha 3BE3[CH CIEKTbp B IPUCHCTBUETO Ha
MHOYKECTBO CIEKTPaJHU JUHUM. TyK ce uMar NpenBHJl €KBUIAUCTAHTHU
peloBe OT JaHHU HO METOABT € MPUIIOKHUM BbB BCUUKH CITyYaH.
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