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Abstract

2
The present paper deals with the analytical evaluation of the definite integral j 1+
0

+ ecosp) "~ * [1 + (e — é)cosp] ~" ! dg, where e(u) are the eccentricities of the particle
orbits, é(u) = de(u)/du, u = In(p), with p being the focal parameter of the corresponding
elliptical particle orbits. The parameter n is the power in the viscosity law # = 8 2", where
2 is the surface density of the accretion disc, and ¢ is the azimuthal angle. We have fulfilled
computations under the following three restrictions: (i) |e(u)| < 1, (ii) |é(u)] < 1 and (iii)
le(u) — é(u)] < 1. They are physically motivated by the accepted for our considerations
model of stationary elliptical accretion discs of Lyubarskij et al. [1]. Many particular
cases, arising from the singular behavior of some terms for given values of e(u), é(u), their
difference e(u) — ¢(u) and the power n, are computed in details. These calculations are
performed in two ways: (i) by a direct substitution of the singular value into the initial
definition of the integral, and (ii) by a limit transition to this singular value into the already
evaluated analytical expression for the integral, obtained for the regular values of the
corresponding variables. In the later case, the application of the L’Hospital’s rule for
resolving of indeterminacies of the type 0/0 is very useful. Both the approaches give the
same results in every verified case, which ensures that the transition through the singular
value is continuous. This means that the analytical solutions for all the considered
(singular and non-singular) cases may be combined into one single formula. Such a
prescription of the solution of the above written integral is very suitable to the occasion,
when this formula is applied for the verification of the linear dependence/independence of
the coefficients, entering into the terms of the dynamical equation of the elliptical accretion
disc.
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1. Introduction: Some definitions and notations

In the present paper we continue the investigation of the stationary
elliptical accretion discs, according to the model, developed by Lyubarskij
et al. [1]. For more clarity, we shall write down the definitions of the
following seven integrals ([2] and the references therein):

Q)  le(een)= :f(l +ecosp) " 3[L + (e - é)cosp] "+ D dg
(2)  lo(eén) Ezof(l +ecosp) " 2[1 + (e — 6)cosp] "D dy ,

(3) Ieen)= f(cos@j(l +ecosp)"’[1 + (e—é)cosp] " Pde; j=0,1,2, 3,4
J

The appearance of the above written integrals lo.(e,é,n), lo+(e,é,n)
and lj(e,e,n), (j =0, 1, 2, 3, 4), is evident from the previous considerations
(and derivations) of the dynamical equation ([1], [2] and the references
therein). For this reason, we shall not discuss now such a subject. We
mention only that the integrals lo.(e,é,n), lo+(e,é,n) and lj(e,e,n), =0, 1, 2,
3, 4) arise, due to the angle-averaging over the azimuthal angle ¢ in the used
system of non-orthogonal curvilinear coordinates (p, ¢). Here p is the focal
parameter of the elliptical orbit for each particle, which changes for the
different parts of the accretion disc. Further in the our exposition, like in the
paper [1], instead of p we use its logarithm u = In(p). Therefore, the
eccentricities e of the particle orbits and their derivatives ¢ = de/du are
functions of the parameter/coordinate u. It is worth to note, that for circular
orbits in the accretion flow (like the standard a-disc model [3]), the
parameter p is simply the radius r of the corresponding particle orbit. To
underline that u is an independent coordinate, we shall often write further
that e = e(u) and ¢ = ¢é(u). It also remains to remark that the parameter n is
the power into the viscosity law 5 = X", where 7 is the viscosity, X is the
surface density of the accretion disc, and g is a constant. We stress that n is a
constant throughout the disc, i.e., n does not depend on u. Of course, under
the transition from one model of accretion flow to another one, the power n
may change from a given value to another constant meaning.

During the process of realization of the our program for
simplification of the dynamical equation (derived initially by Lyubarskij et
al. [1]; stationary case), we strike with the problem of the analytical
evaluation of the derivatives with respect to e(u) and é(u) of the integrals
lo-(e,é,n) and lo.(e,é,n). It can be shown that the first partial derivatives
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Olo-(e,e,n)/0e, Olo.(e,é,n)loe, Olos(e,e,n)/oe and OJlo.(e,é,n)/0é may be
expressed as linear combinations of the integrals lp.(e,é,n) and lo.(e,é,n).
The exact analytical forms of the coefficients of these linear dependences
will be derived in a forthcoming paper [4]. We remind that we have
accepted the following approach. Until now we do not know the searched
for solution e(u) of the dynamical equation and, consequently, the
analytical form of its derivative é(u) = de(u)/du is also unknown. Hence, we
are able to consider the eccentricity e(u) and its derivative é(u) as
“independent” variables, having, however, in mind that under
differentiation with respect to u, we must take into account that é(u) =
= de(u)/du. As we have mentioned earlier, ([2] and the references therein),
we insert the following three restrictions: (i) |e(u)| < 1, (ii) |é(u)| < 1 and (iii)
le(u) — e(u)| < 1 for all values of the parameter u = In(p) (i.e., in fact, for all
admissible values of the focal parameter p). Our current problem, which we
intend to solve, is the question whether the integrals lq.(e,é,n) and ly+(e,é,n)
are linearly independent functions with respect to their arguments e(u), é(u)
and n, or not ? The standard way to check this is to compute the
corresponding Wronski determinants. The identical equality to zero of these
determinants are necessary conditions to be fulfilled the linear relations
between the integrals lo.(e,é,n) and lo+(e,é,n). If the opposite is true, then
lo-(e,é,n) and lo+(e,e,n) must be linearly independent functions of e(u), é(u)
and n, because the pointed out necessary conditions would be violated. The
analytical evaluations of the Wronski determinants require computations of
second order partial derivatives like & %lo.(e,é,n)/6e?, & 2lo.(e,é,n)/dede,
d %lo.(e,e,n)1d€%, 3 %lo:(e,6,n)I0€%, 8 %los(e,é,n)/edé and 8 *lo+(e,e,n)/0é%. In
view of their analytical evaluation, it is appropriate to compute preliminary
two auxiliary integrals, defined by the equalities (4) and (5) below in the
next chapter 2.

2. Computation of two auxiliary integrals

In our preparation to find explicit analytical expressions for the
second order partial derivatives &lo(e,e,n)/0e?,  &%lo.(e,é,n)ldede,
0 %1o.(e,6,n)06%, 0 °lo:(e,6,n)I0€%, 0 lo+(e,é,n)/0edé and 6 %lo.(e,6,n)/06?, we
encounter with the necessity to evaluate two integrals, namely:

(4)  loya(een) = 2I(l +ecosp)” *[1 + (e — é)cosp] " dy

and
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(5)  looss(eén) = f(l +ecosp)" " [1 + (e — é)cosp] "2 d.

We do not give here a precise designation of the above two
integrals. The idea for such (unconventional) index notations is that the
integrands of the integrals, with which we are dealing, may be represented
as a product of three multipliers. Two of them are into the nominator:
(cosp) ™t and (1 + ecosgp)” * O X The third multiplier is, in fact, the
denominator of the integrand: [1 + (e — é)cosp]" " ™%X ‘o transforming it
like a multiplier of the nominator: [ 1 + (e — &)cosg] ~ @ * third index) "y
particular, if the first index = 0, this means that the multiplier cosg is absent
into the nominator. For example, we would be able to write 1,.(e,é,n) as lo.-
3+1(e,é,n), or to write lo.(e,é,n) as lp-2+2(e,6,n). But we shall not change the
“old” system of notations. The reason for this is that the integrals (4) and (5)
only temporarily emerge into our computations and they must not be
considered as frequently struck functions in the evaluated formulas. We also
underline that by the term *“analytical evaluation of the integrals lg_4 +1(e,é,n)
and lp-2+3(e,é,n)” we do not understand by all means that the evaluation is
finished up to some more or less analytical expressions. Instead of that, it
may happen to satisfy us with the more modest conclusion that 1y _4 +1(€,é,n)
and lp-2+3(e,é,n) are linear combinations of the integrals (1) — (3). The
establishing of such linear relations is fully sufficient for our purposes.

2.1. Evaluation of the integral 1., .1(e.¢,n) = J(1 + ecosp)"*[1 + (e -
— é)cosp] ""tdep

2.1.1. Casen#3,e(u)#0,eu)#0

According to the definition (4), we perform the following
transformations of the considered integral 1o 4 +1(€,é,n):

(6) lo.441(e060) :Zf(l + ecosp)”~*(cos?p + sin%p)[1 + (e — é)cosp] "t dp =
=— e‘;{(l +ecosp)” ~3(1 — ecosp)[1 + (e — é)cosp] "1 dp + e‘{fil +ecosp)" ~*x —
X[L+ (e - é)cosp] """ dp — [(n - )e] _lzf(Sin(ﬂ)[l + (e - ¢)cosp] ~"d[(L + ecosp)" ] =
2l

2n
=e 2y 4aa(e.6n) — e 2o (e,6,n) + & 2J(L + ecosp)" L + (e - )cosp] " dp -
0
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- e—ZZjn(l +ecosp)" [ + (e — &)cosp] """ dg + [(n - 3)e?] _11“(1 + ecosp)"
x[(1 + ecosp) — 1][1 + (e — )cosp] "' do +
+(n+1)E-l(n - 3)e] _{f(l + ecosp)" ~*(sin*p)[1 + (e - ¢)cosp] "7 do.

Taking into account in the last integral that sinp = 1 — cos’p, we
arrive at the next relation:
(7)  (@-eAlg4s(e6n) = -2 %lg(e,e,n) + e~ 2lg(e,e,n) + [(n—3)e?] tg(e,é,n) —

—[(h=3)e?] to(e,6n) + (n + 1)(e — &)[(n - 3)e] *zlof(l +ecosp)" 3% [1 + (e — é)cosp] "~ dgp +

+(n+1)(e-9)[(n-23)e*]" l?(1 + ecosp)” 3[(1 — e*cos’p) — 1][1 + (e — é)cosp] ~"~2 dg.

To proceed further, we have to compute the before the last integral
in the above equality, namely:

2n 2

(8) lo.3+2(6,6,n) = (1 + ecosp)" ~*[1 + (e — é)cosp] "% dg = [(1 + ecosp)" ~3[1 + (e — é)cosp] "~ dg —

~[e- é)/e]ift(l +ecosp)" 3[(1 + ecosp) — 1][1 + (e — é)cosp] "2 dp =

= lp(e,é,n) — [(e — é)/e]lo.(e,é,n) + [(e — é)/e]lg 3+2(€,é,n),

where we have used the same manner of notations as for the integral
lo-a+1(e,e,n) and lp -2 +3(e,¢,n). Consequently, from the relation (8) we have:
€)] lo,342(8,6,n) = (e/é)lo.(e,6,n) — [(& = ¢)/é]lo+(e,é,n).

We remark that the above relation is derived under the conditions
e(u) # 0 and é(u) # 0, comprised in the Case 2.1.1. Substitution of (9) into
(7) gives:
(10) @-e Al 4s(e.e,n) =— (2n-5)[(n - 3)e?] tg(e.e,n) + (n—2)[(n - 3)e?] lo(e,é,n) +

+(n+1)(e-n-3)¢] o (e.é.n) - (0 + 1)(e - ¢)’[(n - 3)ee] "loi(e.én) +

+(n+1)e-e)[n-3)e’" 1:I1([1 +ecosp)" ’[1 + (e - ¢)cosp] " dp -

—(n+1)[(n-23)e? 1201(1 +ecosp)" " #{[1 + (e — é)cosp] — 1}[1 + (e — é)cosp] "~ dp —

= (n+1)(e-¢)[(n-3)e’] Hlo.s52(e.61).
Applying again the result (9), we obtain that:

(11)  @-eHlganeen)=(n-3)""[(-2n +5)e* + (n + 1) - é)lé — (n + 1)(e - &)(€%) lo(e,é.n) +
+(N=3) = (n+De=-e)ed) *+ (n+1)(e—e)e +(n+1e 2+ (n+ 1)(e - &)’(€%)]lo+(e,6,n) +
+(n=3)"[(n=2)e %= (n+ 1)e~ly(e,e,n).

Multiplying the above equality by [- (n — 3)e?], we obtain:

(12) (n-3)(1-eAlgssa(ee,n) =[(2n-5) + (n+ 1)1 -e?)(e - é)é lo(e,6,n) -

—(n+ D[(L-eD(e-e)*(ee) "t + (2e — é)le]lg.(e,6,n) + 3lg(e,é,n).
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This is the wanted representation of the integral 1o -4 +1(e,é,n) through
the integrals lo.(e,é,n), lo+(e,é,n) and lg(e,é,n). Obviously, this dependence is
linear and is derived under the conditions (n - 3) #0, e(u) # 0 and ¢(u) # 0.
No matter if e(u) — é(u) # 0 or e(u) — é(u) = 0!

Before to proceed further, we shall remark that we have already
computed the analytical expressions for the integrals

Ai(e,e) E:ﬁl +(e—¢)cosp] 'de; (i=1,2,3,4,5),

Ji(e,e) E:ﬁl +ecosp) "[1+ (e - é)cosp] ' dy; (=1, 2, 3, 4), Hi(e,e) 5?(1 +ecosp) ' x

x [1+ (e — ¢)cosp] ~*dp; (i = 1, 2, 3, 4).Their detailed evaluations are carried
out in paper [5].

We also have analytical estimations for the integrals Li(e.¢) = [[In(1 + ecosp)] (1 +
+ ecosp) " 'x
x[1 + (e — é)cosp] "dy; (i=0, 1, 2, 3), Ki(e,¢) zzof[m(l + ecosp)][1 + (e — é)cosp] ' dg;

(i =1, 2, 3, 4,5), which derivations are circumstantially described in the
papers [6] and [7]. We shall often quote these results, in order to argue our
further calculations. Also we shall take into use the expressions of the above
integrals for some particular values of their arguments e(u) and é(u), which
are cited in the above mentioned papers [5], [6] and [7]. In fact, the later
three works were preliminary worked out, in view of their application to the
needs of the present paper, i.e.,, they are in that sense, auxiliary
investigations.

2.1.2.Casen#3,e(W)#0,e(u) =0 =>e(u)—é(u) £0

According to the definitions (1) — (3), we can write for é(u) = 0 the
following expressions for the integrals Iop(e,é = 0,n), lo-(e,é = 0,n), lo+(e,é =
=0,n) and lg 4 +1(e,é = 0,n):

(13)  Io(e,e =0,n) EZf(l +ecosp) * dp = Aq(e, 0) = z(2 + e9)(1 - &) "2, (eq. (22)
from paper [5]),
(14)  1o(e.e=0,n) = lpi(e,é = 0,n) Ezof(l +ecosp) "4 dp = Aye, 0) = 7(2 + 3e?)(1 - €%) 72,

(eq. (23) from paper [5]), and
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(15)  lp4.(eé=0n)= f(l +ecosp) ~° dg = Ag(e, 0) = (2/4)(8 + 24e? + 3e*)(1 —e%) " %2,

(eq. (24) from paper [5]).

Note that the above three evaluations (13) — (15) do not depend on
the power n in the viscosity law 5 = X ". They are valid also for n = 3! We
can perform the following transformation of the relations (14):

2 2

(16)  1o(e.e=0,n) = loi(e,é = 0,n) = [(1 + ecosp) ~® dg — (1 + ecosp) ~* d(sing) = lo(e,¢ = 0,n) +
0 0
2n
+4€%g_4.41(6,6 = 0,n) — 4l _441(e,¢ = 0,n) + 4[(1 + ecosp)(1 — ecosp)(1 + ecosp) ~° dyp =
0
2n
= Ig(e,é = 0,n) + 4(e% — 1)lg_411(e,6 = O,n) + 4lo.(e,¢ = 0,n) — 4[(1 + ecosp) =3 dg +
0

2n
+4J(1 + ecosp) ~* dg = lo(e,é = 0,n) + 4(e% — 1)lg_4+1(e,¢ = 0,n) + 4lo.(e,6 = 0,n) — 4lg(e,é = 0,n) +
0

+ 4l (e,6 = 0,n) = 8lo.(e,é = 0,n) — 3lo(e,é = 0,n) + 4(e? - Dlg.4+1(e,é =0,n).

From this equality we are able to express the integral lo.s+1(e,6 =
= 0,n) through the integrals lo.(e,é = 0,n) = lo+(e,é = 0,n) and Io(e,é = 0,n).
Consequently, dividing by 4(1 — e?) # 0, we obtain:

(17)  19.441(e.6=0,0) = [4(1 - )]~ [7lo.(e.¢ = O,n) — Blo(e,é = O,n)].

We again note that the above relation (17) is also valid for n = 3,
because under its deduction we do not require anywhere the condition n # 3
to be fulfilled. It is evident also that (17) remains valid for e(u) = 0. In the
later case, the equality (17) can be written as:

(18)  2z=WAH[7(2n) - 3(27)],
which is obviously true.

Let us rewrite the relation (13) in the following way, in order to see
its validity under the transition é(u) — 0:

(19)  (n-3)A-e)lg4.(e.en) = (2n-5)lo(e,én) — (0 + 1)(2e - é)e lo.(e,én) +
+3lo(e,é,n) + (n + 1)(1 - e?)(e — &)¢ ™ Ylo.(e,6,n) - [(e - &)/e]lo.(e,é,n)}.

We see that:

(20)  lim{lo(e..n) - [(e — e)ellos(e.e,n)} = lo.(e,¢ = 0,n) — lou(e,é = 0,n) =0,

é(u)—0
according to the equalities (14). This result ensures that we may apply the
L’Hospital’s theorem for computing of indeterminacies of the type 0/0.
Because oé(u)/oe = 1, it is enough to evaluate the derivative:

2n

(21)  {lo(e.cn) - [(e - é)/ellos(e.c.n)Hae = (n + 1)J(cosp)(1 + ecosp) [1 + (e — é)cosp] "2 dp +
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+ e‘lzzl +ecosp)" 1 + (e - é)cosp] ""2dp - (n + 2)[(e - e')/e]zgzcosw)(l + ecosp)" ™ 2x

2n
X[L+ (e~ &)cosp] " dp ——— (n + 1)](cosp)(1 + ecosp)" (L + ecosp) "% dp +
é(u)y—0

27 2n
+e " Y(1 + ecosp)" 41 + ecosp) """ 2 dg — (n + 2)I(cosp)(1 + ecosp)" (1 + ecosp) "3 dg =
0 0
2n 27 2n
—e (1 + ecosp)(1 + ecosp) ~° dp + e (1 + ecosp) ~° dp + e "Y(1 + ecosp) ~* dp =
0 0 0

2n
=e (1 + ecosp) ~* dp = e g _4.41(e,¢ = 0,n).
0

Therefore:

(22)  lim{e {lo.(e.e.n) - [(e - e)/e]los(e,6,n)}} = € Mg 4 41(606 = O,N).
é(u)—0

So that, we have computed the problematic multiplier, associated
with the transition é(u) — 0. Now, we take this limit é(u) — 0 for the whole
relation (19), taking into account that lo.(e,é = 0,n) = lo.(e,é = O,n) (see the
equality (14)):

(23)  4(1-€%)lg441(e,6 =0,0) = Tlo.(e,e = 0,n) = 3lg(e,e = O,n).

After dividing by 4(1 - €°) # 0, we obtain the relation (17).
Consequently, we may consider the equality (12) as valid also for the case
é(u) = 0, keeping in mind that we have to perform the limit transition é(u)
— 0 with the help of the L’Hospital’s theorem for evaluation of
uncertainties of the type 0/0. We again stress that the above results do not
use the restriction (n — 3) # 0, and may be applied to the case e(u) = 0.

21.3.Casen#3,e(W)=0,é(W#£0 =>e(u)—é(u)#0

Taking into account the definitions (1) — (4), we can write for the
present case the following equalities, as concerns to the integrals lp(e =
=0,é,n), lo.(e =0,6,n), lo+(e = 0,&,n) and 14 +1(e = 0,¢,n):

(24)  1o(e=0,6n)=lg(e =0,6,n) = lg.441(e = 0,,n) = f(l —écosp) "~ tdg,

(25)  1(e=0,n)= f(l —écosp) "2 dp > 0.

Note that the equalities (24) are valid also for n = 3 and also for
é(u) =0, when lp4+1(e = 0,6 = 0,n) = 2z. Let us rewrite the relation (12) in
the following way, in order to see its validity under the limit transition
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e(u) — 0. That is to say, we detach the multiplier, which contains into its
denominator the factor e(u), causing the troubles under this transition
e(u) — 0:

(26)  (n-3)(1-e€)lo4sa(en) =[(2n-5) + (n+ 1)(1 - €*)(e — )¢~ "Tlo(e,é,n) -

—(n+ e (1 -e)(e-eé)’e "+ 2e €]l (ee,n) + 3lg(e,é,n).

The problematic term is the coefficient of the integral lo.(e,e,n) in
the right-hand-side of (26), which contains into its denominator the
multiplier e(u). We see that:

(27)  lim[(1-ed)(e-¢)%e t+2e—¢]=ée 1 -6=0.

e(u)—0

Further, we compute the derivative:

(28) o[(1-eA(e-¢)%et +2e-¢élloe = ¢ - 2e(e—é)* +2(1-eD)(e—é)] + 2 ——
— 5 —2¢l6+2=0.
e(u) —0

We may apply again the L’Hospital’s theorem to obtain that:
(29) lim{e '[(1-€*)(e—-¢)%¢ "t +2e-¢€]}=0.

e(uy—0

This means that, if we take the limit e(u) — 0 for the both sides of
the equation (26), the coefficient before the integral lo.(e,é,n) will become
equal to zero:

(30)  (n=3)lg_441(e =0,6,n) = (N =6)lo.(e = 0,6,n) + 3lo(e = 0,6,n),
or, with the reading of the first equality in (24):
(31)  (n=3)lgp4+1(e =0,e,n) = (n=3)lp.(e = 0,6,n).

Taking into account that in the presently considered case n # 3, we
may cancel out the factor (n — 3) and to obtain the second equality in the
relation (24). As we already mentioned above, it is also valid if we set into
ite(u) =0:

(32)  1y441(e=0,6=0,n)=1p.(e=0,6=0,n) =2z

Therefore, under the limit transition e(u) — 0, the relation (12) leads
to the right equality (31). Consequently, we are able to consider (12) to
remain valid also for e(u) = 0, having in mind that then we must apply the
L’Hospital’s theorem for revealing of uncertainties of the type 0/0.

214.Casen#3. e(W=0,éwW=0 =>e(w-éu)=0

It is easily seen that (both for n # 3 and n = 3):
(33)  lous(e=0,e=0,n)=1lo(e=0,e=0,n)=lo(e =0,6=0,n) = lo,(e = 0,¢ = 0,n) = 27,
Taking into account the correctness of the above equalities, we may
apply the analytical representation (12) also in the present case, after
performing the transitions
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[e(u) — O]N[e(u) — 0] or [é(u) — O]N[e(u) — 0]. No matter which of the
transitions is taken in the first place!

2.15.1. Casen=3,e(u) #0,é(u) #0, e(u) —é(u) #0

2.1.5.1.1. A direct computation of the integral lo4+1(e,é,n = 3)
through the integral lo.(e,é,n = 3)

Substituting n = 3 into the definitions (1 ) — (4), we shall have the
following representations for the integrals Io(e,é,n = 3), lo(e,e,n = 3),
lo+(e,é,n=3) and lg_4+1(e,é,n = 3):

(34)  lo(een=3)=A4ee) =2 +3(—-e)][1-(e—¢e)T "3
(formula (9) from paper [5]),

(35)  Ip(een=3)= Izl +ecosp)[1 + (e — é)cosp] ~° dg,

2n

(36)  Io(e.en =3)= (1 +ecosp)[1 + (e — é)cosp] ~* dg,

(37)  Mouss(een=3)=Jyee) =

= (- 2e* + 6e° — 6e® + 2e'% — 14e%¢ + 28e”6 — 14e% + 7e*6? — 49e%6? + 4268 + 35¢%6° — 70e6° +

+26% + 8e%6" + 70e%" — 10e¢® — 14e%¢° — 426%¢° + 3¢° + 7e2e® +14e%¢® — e¢” — 26%) +

+ 27r€4é_4(1 _ ez) -1/21

(see formula (47) from paper [5] for the explicit writing of the
integral Js(e,é) as a function of the variables e(u) and é(u) = de(u)/du).

For the purposes, which will become evident from the consequent
exposition of the text, we shall not use directly the above written solution
for the integral lp.4+1(e,e,n = 3) (37). Instead of that, we begin with a
transformation of the first equality in (37), in order to introduce into the
right-hand-side of (37) the integral lo.(e,é,n = 3). We intend further to
express the integrals lo+(e,e,n = 3) and lo(e,é,n = 3) (for which we do not
give until now any explicit solutions in the formulas (35) and (36),
respectively) through the later integral Io.(e,é,n = 3).

2n

(38)  1g441(ee,n =3) =[[(1 + ecosp) - ecosp](1 + ecosp) ~[1 + (e - €)cosp] ~* dp = I.(e,é,n = 3) -

—[elle- e')if(l +ecosp) "'[1 + (e - é)cosp] * dg + [el(e - e')]zgil +ecosp) "1 + (e — é)cosp] ~* dg =
= lo(e,é,n = 3) — [e/(e - &) Ja(e.€) + [e/(e - €)]lo.441(.60 = 3),
where we have used the definitions (34) for lo.(e,é,n = 3) = A4(e,é), (37) for
lo-a+1(e,é,n = 3) and (40) from paper [5] for the integral Js(e,é). Therefore,
the above equality (38) gives an expression for the considered integral
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lo-s+1(e,&,n = 3).The division by [~ é/(e — é)] # O (this is ensured for the
examined Case 2.1.5.1), gives that:
(39)  lggs(een =3) = Jue.e) = [(e - é)le]lo.(e,e,n = 3) + (e/é)Is(e,¢).

In the earlier paper [5], we have derived several recurrent relations
with respect to the integrals Ji(e,é), J2(e,é) and Js(e,é):
(40)  Js(e.0) = - [(e - &)/é]As(e,) + (/¢)Ia(e,6),
(first equality from the relation (42) in paper [5]; for brevity’s sake, we omit
the writing out of the explicit dependence of Js(e,é) on e(u) and é(u), given
by the last equality in (42)),
(41)  Jx(ee) =-2a[(e—e)le][1 - (e — €)7] Y2 + (ele)ds(e.é), (formula (33)
from paper [5]).

Of course, we need also of the expression (27) from paper [5],
giving the explicit analytical solution for the “initial” integral J;(e,é):
(42)  Ji(e) = ule){e(l-eD) Y2 —(e-€)[1-(e-¢)] Y7}

It remains to replace, in turn, (42) into (41), and after then (41) into
(40), in order to eliminate from the equality (40) the integral J,(e,é). But
before to make into use this result, intending to resolve for the left-hand-side
of the equation (39), we want to derive a presentation of the integral As(e,é)
through the integral lo.(e,é,n = 3). Let us compute the auxiliary integral
As(e,é) in the following way:

(43)  As(ed) =20f[1 + (e~ é)cosp] * dyp - (e - e)zof (cosp)[1 + (e - é)cosp] ~* do.
Earlier we have already found that:

(44)  Age) Ezof[l + (e - &)cosp] * dp = 2afL - (e - )],

(formula (8) from paper [5]). Therefore:

(45)  Aseé)=2all-(e-91 - (e- é):fzcow)[l + (e - é)cosp] ~* do.

Developing further the right-hand-side of the above relation (45), we
have:

2n

(46)  Age.e)=2a[1- (e - &)’ ¥ %= (e - &)l[1 + (e - é)cosp] ~% d(sing) = 22[1 — (e — &)7] ~¥? +
+3(e - e')zzjon[l + (e —é)cosp] " dp + 32]1[{[1 — (e — é)%c0s%p] — 1}[1 + (e — é)cosp] ~* dg =

=27[1-(e—¢)? ¥2+3(e - 6)’lo(e,6,n = 3) + 31[1 + (e — é)cosp] ~* dg -

31



-3(e- é;f(COS(p)[l + (e — é)cosp] % dgp — 3lg(e,é,n = 3),

where we have used the representation (34) for the integral lo-(e,é,n = 3),
when the power n = 3. Consequently, the equalities (46) lead to the result,
which can be rewritten as:

2

(47)  -2A5(e.€) = 2x[1 - (e- €)%~ ¥'?+ 3[(e - ¢)* - 1]lo.(e:é,n = 3) - 3(e - é)f(cos@x

x[1 + (e — é)cosp] 2 dp =—4n[l - (e—¢)?] ¥+ 2(e - é)ZﬁCOS(p)[l + (e — é)cosp] 3 dg.

The second equality in the right-hand-side of (47) follows from (45)
(after the multiplication of (45) by — 2). From (47) we evaluate the integral
for which we are looking up. After dividing by — 5, we obtain that:

(48) - (e-o)l(cosp)[1 + (e — é)cosg] *dy = — (6a/5)[1 - (e — ¢)’] "2 + (3/5)[1 - (e — &)lo(e.6,n = 3).

Substituting the above result (48) into (45), we arrive at the final
expression for the integral As(e,é):

(49)  Asee) = @aB)[1-(e-¢)]¥2+ B5)[1- (e - ¢)lo.(e.e,n = 3).

Now we are ready to combine the solutions (42), (41) and (49), in
order to express the integral Js(e,é) through the integral lo.(e,é,n = 3) by
means of the recurrence relation (40). At first, from (42) and (41) it may be
evaluated that:

(50)  Jee)=-2n(e-¢)¢ M [L-(e- )] V2 -2ne(e— &) L (e — )] M2+ 2me% X1 -€?) V2

Then, the relation (40) leads to the expression:

(51)  Js(e.e) = - (4afS)e-é)e [1-(e—e)*] ¥2-2ne(e —¢)e 1 - (e—é)7] %2 -
—2me¥e—é)é [L-(e—¢)? Y2+ 2me% (1 - e%) Y2 (3/5)(e — &)[1 - (e - 6)*]é lo(e,6,n = 3).

Of course, if we replace the analytical expression for the integral
lo.(e,6,n = 3) = Ag(e,6) = 7[2 + 3(e - &)°][1 - (e — €)] ~ "' ? (see the relation
(34) in the present paper) into (51), we have to obtain the representation (42)
from the paper [5] for the same integral Js;(e,é). We shall not perform here
this checking.

Finally, having available the analytical solution for the integral
Js(e,é), written into the form (51), we are able to replace it into the equation
(39), eliminating thus this integral. Consequently, we conclude that under
the conditions, accepted for the considered at present Case 2.1.5.1, the
integral Io-4+1(e,é,n = 3), which we are seeking for, takes the following form
(here we do not use the explicit solution (34)):

(52)  1g.4s1(e.60=3) = Jue,é) = - (4ulS)e(e - &) A [1- (e — )] ¥ -
—2ne’(e—¢é)e [1-(e—- €)1 Y2 - 2ze e - )¢ [1-(e—¢)] Y2+
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+2rete 41— e®) V2 [(e - o)/[{1 + (3/5)e[1 - (e — 6)?]é " }o(e.6,n = 3).

As before, the remark given above, and concerning the replacement
in (52) of the integral lo-(e,é,n = 3) with its analytical solution (34), remains
valid also for the present situation. Such a substitution of the relation (34)
into (52) leads to the analytical expression for J4(e,é), found in the paper [5]
(formula (47) in this paper). Again, we shall not check this equivalence of
the formulae (52) and (47) in paper [5], because of the brevity reasons.

2.1.5.1.2. Evaluation of the integral 1.4 +1(e,é,n = 3) through the
limit transitionn — 3

We have computed the explicit analytical expression (52) for the
integral lo_4+1(e,e,n = 3), preserving the existence of the integral lo.(e,e,n =
= 3), unlike the analytical solution (37). Now we ask: are we able to use the
relation (12) (derived under the condition n # 3) in the limit n — 3, to obtain
the solution (52)? The later is computed through a direct substitution n = 3
into the initial definition (37) for the integral 14 +1(€,6,n = 3), in accordance
with the general definition (4) for the integral o4 +1(e,é,n). For this purpose,
we shall try to evaluate the integrals lo(e,é,n = 3) and lo+(e,é,n = 3) also by
means of the integral lo-(e,é,n = 3). This will enable us to check whether the
right-hand-side of the equality (12) tends to zero, when n approaches 3, and
then to try to apply the L’Hospital’s rule for evaluation of indeterminacies
of the type 0/0.

Let us write out the integrals Io(e,é,n = 3) and lo+(e,e,n = 3) through
the integral lo.(e,e,n = 3). We have the following expression (see definition

(36)):

(53)  Ig(een=3)= In{[l + (e — &)cosp] + écosp}[1 + (e — &)cosp] ~* dp = As(e,é) +

+ (e'/e)an[(l +ecosp) — 1][1 + (e - é)cosp] ~* do = Ag(e,é) + (efe)lg(e,é.n = 3) — (éle)lo.(e,é,n = 3).

From here, we are in a position to find a resolution for the wanted
integral Io(e,é,n = 3). After multiplying by e/(e — ¢) # 0, we have:
(54)  lo(e.ein =3) = [el(e - &)]As(e,é) — [él(e — &)]lo.(e,é,n = 3).

To finish the solution process, we must replace the analytical
representation (49) of the integral As(e,é) through the integral lo.(e,é,n = 3):
(55)  Io(e,e,n=3) = (4n/5)e(e — &) 1 - (e-€)*] ¥2+ {(3/5)e[1 - (e - &)*](e —¢) " -

—¢l(e-é)} lo(e,é,n=23).

Further we compute the integral lo+(e,é,n = 3) (see definition (35)):
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(56)  lo(een=3) :zf{[l + (e — é)cosp] + écosp}[1 + (e — é)cosp] > dp =

= lgp.(e,e,n = 3) + (éle)lo.(e,é,n = 3) — (ele)As(e,é),
where we have taken into account the definitions (34), (35) and ((19), paper
[5]) for the integrals lo.(e,é,n = 3), los(e,é,n = 3) and As(e,é), respectively.
From the above derived relation (56) it immediately follows (after a
multiplication by e/é¢) an expression for the integral As(e,é) through the
integrals lo.(e,é,n = 3) and lg+(e,é,n = 3):

(57) As(ee)= 3[1 + (e - é)cosp] ~° do = (elé)lo.(e,e,n = 3) — [(e — é)/é]los(e,6,n = 3).

Let us perform certain transformations of the assumed by us as
“basic” integral lp.(e,é,n = 3), in order to link it to some other integrals. And
thus to establish the seeked representation of lg.(e,é,n = 3) by means of
lo-(e,é,n = 3). Of course, we may substitute into (57) the already known
solution (19) from paper [5] for As(e,é), and express in such a way
lo+(e,é,n = 3) solely by means of ly.(e,é,n = 3). But we shall do this in a
different manner.

(58)  Io(e.é,n=3) = [{[1 + (e - é)cosy] — (e — é)cosp} [1 + (e — €)cosp] ~* dp = As(e,é) +
+4(e— é)%f (1= cos’)[1 + (e — €)c0sp] ~° dp = Ag(e,é) + 4(e — 6)?As(e,d) + 420f[1 ~ (e - é)cosg]x
x[1 + (e — &)cosp][1 + (e — é)cosp] ~> dp — ji‘[l + (e — é)cosp] ~° dp = Ag(e.é) -

_4[1 - (e - ¢)]As(e.6) + i(f [1+ (e —é)cosp] ~* do — 425{[1 + (e - )cosp] — 1}

X[1 + (e — é)cosp] ~* dp = — 3Ag(e,é) — 4[1 — (e - €)*]As(e,é) + 8ly.(e,6,n = 3),
where, evidently, we have used the definitions (16) and (19) from paper [5]
for As(e,e) and As(e,é), and (34) for lo.(e,é,n = 3) = A4(e,é). Consequently,
we have:
(59)  7lo(e.ein =3) = 3Ag(e,¢) + 4[1 - (e - é)°]As(e,é).

At present, it remains to substitute into this equality (59) the earlier
derived results (49) for As(e,é) and (57) for As(e,é).The division by 4[1 -
— (e —¢)*] # 0 gives:

(60)  (7/4)[1- (e - &)*] Yo(e,e,n = 3) — (3n/5)[1 — (e — €)°]~ %2 = (9/20) lo.(e,6,n = 3) —

— (e/é)ly.(e,e,n =3) =—[(e — ¢)/e]lo+(e,6,n = 3).

From here, it is easy to establish the following linear relation
between the integrals lo.(e,é,n = 3) and lo+(e,e,n = 3):

(61)  lou(e,en=3)=(3a/5)é(e— &) [1-(e—€)*] Y%+
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+ [él(e - &)]{(9/20) + (e/é) — (TID)[ 1 - (e — 6] *Ho.(e,é,n = 3).

The derived above linear dependence (61) between the integrals
lo-(e,é,n = 3) and lg+(e,é,n = 3) is remarkable with the conclusion that at
least under the conditions (which are supposed during the evaluation (61)) n
=3,e(u) £0, é(u) #0 and e(u) — é(u) # 0 (i.e., Case 2.1.5.1) we already
know the answer of the problem, which we are seeking for. Yes, the
integrals lo.(e,é,n = 3) and lo.(e,e,n = 3) are linearly depended! Such a
finding is not surprising in view of the established earlier [8] analytical
solutions for the integrals lo.(e,é,n) and lo+(e,e,n) for integer powers
n(n=-1,0,1, 2, 3). If we take the results for n = 3:

(62)  lo.(e,e,n = 3) = (w/4)(8e + 4e® — 12¢° — 86 — 32 %6 + 45e*¢ + 52eé” — 60e%¢? —

—246° +30e%° - 3¢°) (e - ¢) " [1- (e - )] Y2 (formula (6g)
from paper [8]),
(63) lo(een=3)=x[2+3(-¢e)[1-(e-¢)°]" "3 (formula (6h)
from paper [8]).

The linear relation (61) between the integrals lo.(e,é,n = 3) and
lo+(e,é,n = 3) is fully consistent with the analytical expressions (62) and (63)
for these functions of e(u), ¢(u) and the (fixed) power n = 3. Similar
conclusions about the existence of a linear dependence between lo.(e,é,n)
and lo+(e,é,n) can be made also for the other (fixed) integer values of the
power n in the viscosity law # = X" for n = — 1 (see formulas (2g) and (2h)
from paper [8]; for n = 0 (see formulas (3g) and (3h) from paper [8]); for
n =+ 1 (see formulas (4g) and (4h) from paper [8]) and n = + 2 (see
formulas (5g) and (5h) from paper [8]). We shall not enter here into a
discussion about the explicit analytical form of the later pointed out linear
functional dependences. Nor yet about their validity, as regards to the
possible troubles for ““peculiar’ (i.e., vanishing some denominators of the
expressions) values e(u) = 0, é(u) = 0, and e(u) — ¢(u) = 0. We postpone
such a debate for later considerations. Our dominant aim now is to prepare
to solve the problem of the existence of linear relation between the integrals
lo-(e,é,n) and lo.(e,é,n) for arbitrary (physically reasonable) values of the
power n. Of course, we remind that for every concrete accretion disc model,
n remains a preliminary fixed quantity throughout the whole disc [1].

Let us compute the right-hand-side of the relation (12), in order to
check its nullification for the particular value n = 3. We shall apply the
results (55) and (61) for the integrals lo(e,e,n = 3) and lo.(e,e,n = 3),
respectively:

(64) [1+4(1-e)(e-¢)é No(een=3)-4[(L-ed)(e—-é)e te™t + (2e —é)e lp(eé,n=3) +

+ 3lg(e,e,n = 3) = — (127/5)(e° — 2eé + ¢* — e* + 2e% — &% + 2eé — ¢°)e " Y(e — &) "%
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x[1=(e—¢)?]~¥%+ (12n/5)e(1l —e? + 2eé - *)(e — &) "[1 - (e—¢)*] " ¥2 +

+{(c+4e—4é—4e*+ 4ezé)e“12—f‘.1(e2 —e*+2e% - ezg'zz)e‘l(g tlé)‘lg . '

x{(9/20) + (e/é) — (7/4)[1 - (e — )] "} + (9/5)e[L — (e — ¢)’](e — &) " = 3é(e — &) *Ho(e,6,n = 3) =

= {20¢%(e - &)[1 - (e - &)’} {20é(e - &)[1 — (e — ¢)*](4e — 4e® — 3¢ + 4eé) +

+46(—e + e = 2e% + ec){9¢[1 — (e — 6)?] + 20e[1 — (e — 6)?] - 356} + 36ec’(1 — e + 286 — 6°)? —

- 606°[1 - (e - €)°IHo.(e,6,n = 3) = {206%(e - €)[1 - (e — €)°]} ~*x0xIg(e,6,n=3) = 0.

To arrive to this zero result, we have taken into account (after some
elementary algebra), that the multiplier of the integral lo.(e,é,n = 3) into the
square brackets is identically equal to zero. The same conclusion can be
made also for the “free” term (i.e., the term without the integral lo.(e,é,n =
=3)) in view of the identity: (- e + &> — 2e% + eé” + e — e° + 2e% — eé”) = 0.

That is why, the combination of these two equal to zero multipliers
leads to the final nullification of the right-hand-side of the equality (12) for
n=3:

(65) Iim{[(2n-5) + (n + 1)(1 —e)(e - )¢ lo.(e,e,n) — (N + D[(1 — %) (e — &)*(ee) ' +

n—3

+ (2e - é)le]lo+(e,e,n) + 3lg(e,é,n)} = 0.

This evaluation (65) indicates that we are able to attempt to compute
the integral 1o 4 +1(€,6,n = 3) not only through a direct substitution n = 3 into
its definition (4) (see also formula (37)), but also from the relation (12),
using the limit transition n — 3, in order to overcome the indeterminacy of
the type 0/0. The reasoning to perform such a duplicating evaluation of the
integral lo-4+1(e,é,n = 3) is to show the universality of (12), i.e., that it
remains valuable even in the case n = 3, despite of the necessity to interpret
it through the limit transition n — 3. With the invitation of the L’Hospital’s
rule for resolving of the indeterminacies of the type 0/0. The conditions for
applicability of this theorem are formulated in the textbooks on analysis and
are also adduced for clearness in paper [5]. One of them (in our concrete
task) is fulfilled by virtue of the established result (65). Other condition
concerns the multiplier (n — 3)(1 — €% into the left-hand-side of the equality
(12), which, in fact, must be considered as a factor into the denominator in
the right-hand-side of (12). If we regard (12) as a solution for the integral
lo-4+1(e,e,n = 3). Specifically:

(66)  lim{o[(n-3)(1 - e)]/on} = lim(1 —e®) =1 -e?#£0,

n—3 n—3
because |e(u)| < 1. It is easily verified that the remaining conditions, for the
applicability of the L’Hospital’s theorem, are available. But only if, at first,
we have already computed the limit transition n — 3 of the derivative with
respect to n of the right-hand-side of the solution (12) for lg.4+1(e,é,n). As
we shall see now, the later evaluations are not too problemless for
resolving. We just now start to resolve this task. We begin with the finding
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of the derivative with respect to the power n of the right-hand-side of the
equality (12) and then take the limitn — 3:
(67) alon{[(2n-5) + (n + 1)(1 — %) (e — &)¢lo(e,,n) — (N + D)[(1 - €%)(e — é)*(ee) ~* +

+ (2e = &)le]lo.(e,6,n) + 3lg(e,6,n)}= — [2 + (1 - %) (e - é)é'l]zf[l + (e - é)cosp] *dp -

n—3

—[(1-e)(e-¢é)’(ee) ™ + (2e - e‘)/e]fn(l +ecosg)[1 + (e — é)cosp] ~° dg +
+[1+ @1 -e)(e- e')e‘-lif[l + (e — é)cosp] ~{In{(1 + ecosp)[1 + (e — ¢)cosp] ~*}} dg —
—4[1-e%)(e-é)*(ee) t + (2e - e')/e]fn(l +ecosp)[1 + (e — é)cosp] ~°x

x{In{(1 + ecosp)[1 + (e — é)cosp] ~}} dop + 3?(1 +ecosp)[1 + (e — é)cosp] ~*x

x{In{(1 + ecosp)[1 + (e — é)cosp] ~*}} dp = C(e,é).

In deriving of the above equality, we have taken into account the
definitions (1), (2) and (3) for the integrals lo.(e,é,n), lo+(e,é,n) and lo(e,é,n),
respectively. We also have used from the analysis the well-known
differentiation formula:

(68) d@)/dx=a"In(a); a>0,

where the basis a > 0 does not depend on the variable x. From this rule
immediately follows that if we have the constants a > 0, b > 0, y and z, then
we can write:

(69)  drdx(@ b ) = didx(@ b 7Y) = (@ /b )In(a) + (@ ¥Ib ) [In(b)]d(= x)/dx =

= @ * *)[In@) - In(b)] = (@' **/b> M)In(asb).

The above rule is applied, when the differentiation with respect to
the power n of the integrands of the integrals lo.(e,é,n), lo«(e,e,n) and
lo(e,é,n) has been performed. To continue the analytical evaluation of the
right-hand-side of the relation (67) (which, after the transition n — 3, we
denote briefly by C(e,é)), we have to return to certain auxiliary results,
derived especially for the present investigation. They are published in
papers [6] and [7], and are dealing with the analytical computations of the
integrals Li(e,e) (i =0, 1, 2, 3) and Kj(e,é) (i = 1, 2, 3, 4, 5), (see their
definitions (17) and (18), respectively). We do not rewrite here these
solutions, and also the expressions for some of the particular values for the
first and second arguments of Ki(e,¢) (i = 1, 2, 3, 4, 5). Namely, Kj(e,0) (i =
=1, 2, 3, 4,5) and Kj(e — ¢,0) (i = 3, 4, 5) [7]. We only refer to these (to
some extend) long formulas in paper [7], in order to avoid the unnecessary
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overload of the our exposition. With the above remarks, we write from (67)
that:

(70)  Clee)=(e—-€°+ e +e%)e *Aye.6) + (— & + €° — 26% + ec®)e " *Ag(e,) +

+ {el[é(e - )} e + e® — 2e% + ec®)Aq(e,¢) — {el[é(e — &)} (- e + e° — 2e% + ec?) Ag(e,6) +

+ (de — 4% — 36 + 4e%)6 T 1K (e,6) — (de — 4e® — 3¢ + 4e%6)6 T 1K y(e,6) +

+ (- de + 4e® — 8% + 4ec)é ~ TKs(e,6) +

+ {el[é(e — )]}~ e + 4e® — 8e%e + 4ec?)K,(e,¢) — {e/[é(e — &)]}H(~ de + 4e® — 8eZ6 +

+4e¢’)Ks(e,6) —

— (— 4e + 4e° - 8e%6 + 4e6®)6 ™ 'Ks(e — 6,0) —

—{el[é(e — &)]}(— 4e + 4e® — 8e6 + deé))K (e — ¢,0) +

+ {el[é(e — &)]}(- 4e + 4e® — 8% + 4ec’)Ks(e — 6,0) + 3K (e,6) + 3[e/(e - €)]Ka(e,e) —

= 3[el(e — &)]K4(e,e) — 3K,4(e — ¢,0) — 3[e/(e — €)]Ks(e — ¢,0) + 3[e/(e — é)]K4(e — ¢,0) =

= [el(e - &)][1 - (e - ¢)]As(e.¢) - [¢é/(e - ¢)]Au(e.) + 4lel(e - E)][L - (e - €)°]Ks(e.é) -

— 7[el(e - &)]K4(e,e) + 3[el(e — ¢)]Ks(e,é) — 4[e/(e - &)][1 - (e - ¢)?]Ks(e — ¢,0) +

+ 7[el(e — e)]Kq4(e - ¢,0) — 3[e/(e — €)]Ks(e - ¢,0).

At present, we are in a position to substitute into the last equality of
the above relation the corresponding analytical evaluations for the integrals
As(e,é) (formula (9) from paper [5]), As(e,é) (formula (19) from paper [5]),
Ks(e,é) (formula (18) from paper [7]), Ka(e,e) (formula (20) from paper
[71), Ks(e,é) (formula (22) from paper [7]), Ks(e - ¢,0) (formula (31) from
paper [7] with the replacement e — e — ¢é), K4(e — ¢,0) (formula (34) from
paper [7] with the replacement e — e — ¢é) and Ks(e — ¢,0) (formula (36)
from paper [7] with the replacement e — e — ¢). Therefore:

(71) C(ee) = (e-&) H(nla)e[1 - (e - &)2][8 + 24(e — é)* + 3(e — &)*I[1 - (e — ¢)1] %2 -

—me[2 +3(e - é)°|[1 - (e — €)2]~ "2 + de(nlA)[1 - (e — &)°](8 + 24e? + 3e* — 48eé —

—126% + 246 + 18e%6% — 12e¢® + 36%)[1 - (e — €)°] "¥?InZ(e - ¢,0) + (4n/6)e[L — (e — &)]]x
x(—3e* + 9e® — 9e® + 3™ — 4e% — 10e% + 32”6 — 18e% — 6e%6? — 4e*¢? — 35e%? + 45e%% —
—12e6® - 166%° — 60e’¢® + 39e%6* + 25e%" + 45e%" — 18e¢” — 16e%° — 18e%° + 3e6° + 3e%6°)x

x¢ "1 - (e-&)%] "2 + (4n12)e[1 - (e - 6)?](6e” - 24e° + 36€° - 24e™° + 6e'? + 8e3¢ + 18e% -
—102e7¢ + 118e% — 42e™6 + 12?6 + %6 + 88e% — 227e%? + 126e'%° + 24ec® + 16e%° -
- 35%° + 205e7¢® - 210e%° - 50¢* — 138e%¢* + 48e** — 70e%"* + 210e%* + 182e¢® — 40e3¢° -
- 16€°6° - 126€7¢° — 55¢° — 4e%6® + 17e%¢® + 42e%° + 9es” — 3e3¢” — 6e%6")e ~[1 - (e — 6)7] ~*x
x(1-e?) Y2+ (207/12)e[1 - (e - é)z]glO +11e% - 22e¢ + 116°)[1 - (e — €)?] % -

—7re(2 + 36 — 666 + 36%)[L — (e — &)°]~ " AInZ(e — 6,0) — (Taf3)e(— 26% + 4e° — 267 — 3% — 5e'e +
+ 8e5%6 — Bee? — 5e%6? — 12e%6% — 26° + 9e%6® + 8e*e® — 3es? — 2e36M)e I[1 - (e — 6)?] Y2 -

— (72/3)e(2€® - 6> + 6e” — 2e” + 3e% + 4e*e — 17e% + 10e%¢ + 6ee’+ e36” + 13e%° — 20e”¢” — 116° -
—12e%6% + 3e%¢® + 20e%6° + 17e6* — 7e%* — 10e%* — 4¢6° + 2e26° + 2e*¢°)e ~3[1 - (e - 6)7] ~3x
x (1-e?)~Y2_ (14x/3)e[1 - (e - e')j “S2_ (7xf3)e(11 + 4% — 8es + 469 [L - (e — 6)7] ° +
+3me(2 + e? = 2e6 + )1 - (e — 6)?] ¥ ?InZ(e - ¢,0) + 3me(— e? + 26" — e® — 2e6 — 26% + 4e’¢ —
—26%% — 6ee? + 2e6° + 4636 — e%6%)e L — (e — &) Y2 +

+37e(e? — 26" + €° + 206 + €% — 3e% — 36> + 3e? + e’ — €%¢%)e "Y1 - (e — &)7] Y (L-€D) "V +
+97e[1 - (e — 6)%] "2 — (4n/48)e[1 — (e — &)°][(96 + 288(e — &)* + 36(e — &)*][1 — (e — &)°] ¥ *x
xInZ(e - ¢,0) — (4x/48)e[1 — (e — &)°[{— 200 — 312(e — &) - 21(e — &)* + [200 + 220(e — €)*]x
x[1-(e—-¢)Y %1 - (e-€)*] Y% + (7al6)e[12 + 18(e — é)z][l —(e-¢)°1""4nZ(e - ¢,0) +
+ (Tnl6)e{- 22— 15(e — ¢)® + [22 + 8(e — &)*][L — (e — &)V }[1 - (e — 6)7] "2 -
— (3n/2)e[4 + 2(e - &Y][1 - (e — 6)°] ¥ 2InZ(e - ¢,0) — (3n/2)e{- 6 — (e — &) + 6[1 — (e — &)*]" 2}
x[1-(e-¢)1"¥%
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In the above equality we have used the notation Z(e,é), introduced in
the paper [7] (formula (23) in paper [7]). If we accept for the first argument
of this function the difference e(u) — é(u), and a constant zero value for the
second argument, it is easy to see (formula (24) from paper [7] with the
replacement e — e — ¢) that:

(72)  z(e-¢0)=2{2-3(-¢)® +(e-¢)-2[1-(e-¢) "} e-¢&) H1-[1-(e-e) M} L

The long expression (71) for the function C(e,é) may be simplified,
if we notice that the coefficient, multiplying the sum of the six terms with
the logarithmic function InZ(e — ¢,0), is exactly equal to zero. Even more:
the coupling of such terms by triplets with common coefficients shows that
the later are also with zero values. Let us prove this statement. Combining in

(71) the Srd, the 7th and the 12th terms together, and also the 16th, the 18th

the ZOth terms by triplets, we obtain also a zero sum.

Rejecting the above mentioned six terms (because of their zero
contribution), we further simplify the expression for C(e,é), which already
does not contain any logarithmic functions. After some algebraic
transformations of the remaining 15 terms, we arrive at the final conclusion:

(73)  lim{alon{[(2n-5) + (n + 1)(1 - €*)(e — )¢ o.(e,é,n) — (N + V)[(L - eD)(e - é)*(ee) * +
n—3
+ (2e — é)le]lg.(e,6,n) + 3lg(e,6,n)}} = C(e,6) = (1 — €?)(e — &)(~ 2e® + 6e° — 6’ + 2e° — 2% -
—8e%e + 22e% — 12e%¢ — 2e6” — e%6” — 27€%6% + 30e’¢? — 26° — £%6° + 8e'¢® — 40e%6” + Tee* + 8e¢* +
+306%* - 36° - 66%6° — 126%6° + eé® + 26%%)6 T [1 - (e — 6)] "% + 2ne*(1 - €% (1 - €% V2

Taking into account the transition (66), we have from the relation
(12) (after a division by (1 — e?) # 0), that:

(74)  limlo4.a(e.en) = lim{J(1 + ecosp) "~*[1 + (e — é)cosg] "' dg} = x(e — &)(— 2¢° + 6e° — 6e” +
n—3 n—3°
+26% - 2e% — 8e"e + 22e% — 12e% — 2e¢® — %67 — 27e%? + 30e’¢? - 2¢° — e%¢® + 8e'é® — 40e%° +
+7ec" + 86" + 306%* - 3¢° - 6e%¢° — 12e*¢® + ec® + 26%°)¢ [1 - (e - ¢)7] "2 +

2
+2me*e 41 -e?) Y2 = [(1 + ecosp) }[1 + (e — &)cosp] 4 dg = lg_4 11 (e,6,0 = 3).
0

The above expression coincides with the expression for the integral
lo-a+1(e,é,n = 3) = Jy(e,é) (formula (37), which is, in fact, the result (47),
derived in the paper [5]). This means that the transition n — 3 in the
solution (13) is continuous. And it is possible to use this linear relation even
for n = 3, having in mind that we have to apply, in this connection, the
L’Hospital’s rule for resolving of indeterminacies of the type 0/0.
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2.15.2.Casen=3,e(uW#0,é(u)=e(u)Z0 =>e(u)—¢éu)=0
A direct computation from the definition (4) gives that:

(75)  lps4u(eé=en=3)= f(l +ecosp) "t dp = 27(1 - €?)"V2 = A(e,0),

(see, for example, formula (20) from paper [5]).
This result follows also from the above just derived expression (74), if we
substitute into it ¢(u) = e(u). It is also in agreement with the relation (12),
because (74) is derived as a consequence from (12) in the limitn — 3.

2.1.6.Casen=3,e(u)#0,é(u)=0 =>e(u)—é(u)#0

A direct computation from the definition (4) gives that:
(76)  lo.4.(ee =en=3)=As(e,0) = (z/4)(8 + 24e® + 3e*)(1 - &%) V2,

(formula (24) from paper [5]).

In deriving of the above expression (76), we have at first taken the
limit ¢(u) — 0, and after then we have performed the transition n — 0. The
solutions (75) and (76) coincide with the solutions A;(e,0) and As(e,0),
respectively, and we note that the laters do not depend on the power n in the
viscosity law # = Z". We now shall show that we may change the order of
the transitions: at first we may take into (4) the transition n — 3 and after
that substitute é(u) = 0. The final result will be the same as (76). In the
expression (74) the transition n — 3 is already performed and it remains to
evaluate it in the limit ¢(u) — 0. Performing into the first term the
multiplication by (e — é) # 0 (in the our Case 2.1.6 e(u) — ¢(u) # 0 !) and
reducing to a common denominator the two terms of the solution (74), we
want, in fact, to evaluate the limit:

(78)  x(1-€) VAUim{{(- 2¢" + 6€° — 6e® + 260 — 14e% + 28e"¢ — 14e% + Te'e® — 49e%¢? + 42¢°¢” +
+35e°¢° - 7(;36(;16}3: ge'4 +8e%e" + 70e%¢" — 10eé® — 14e°¢° — 426°6° + 3¢° + Te?e® + 14e’¢® —eé’ -

_ 263é7)(1 _ eZ)lIZ + 264[1 —(e _é)z]w Z}é“‘[l —(e _é)z]-w 2}.

To apply the L Hospital’s rule for evaluating of indeterminasies of
the type 0/0, we must compute the derivatives with respect to é(u) from the
denominator and the dominator of the above expression (78).

It is easily checked that the other conditions for the application of
the L’Hospital’s rule (see paper [5]) are also fulfilled. It turns out, that this
rule has to be used four times, because only after the fourth differentiation
with respect to égu) of the denominator
¢'[1 - (e - ¢)°]" ? into (78) ensures non-zero value for é(u) = 0. We here
temporarily neglect the multiplier z(1 — %) =Y ? into the left-hand-side of
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the equality (78), because it does not make sense under the limit transition
é(u) — 0. Therefore, we successively compute the following derivatives
with respect to é(u) under the transition é(u) — 0:

(79)  lim{dlee{e'[1 - (e—¢) "%} = 0.

é(u)—0

(80)  lim{d/oe{ac* [1 - (e—e)*]"2+ 7' e - &)[1-(e-€) "3} =0.
é(u) —0

(81)  lim{o/oe{126°[1 - (e — €)°]"2 + 566%(e - &)[1 — (e — €)Y > - 7' [L — (e — €)Y 2 +
éuy—0

+35¢'(e - ¢)[L- (e-¢)] 3} =0.
Finally, we compute analytically that:

(82)  lim{oloe{24¢[1 - (e - €)°]"? + 252¢%(e — €)[1 - (e — €)°]” 2 - 84&[1 - (e — &)°]7 2 +
fﬁ”ﬁo}& — ) [1-(e-¢)?¥?-105¢*(e - €)[1 - (e - &) 2 + 105¢*(e - ¢)*[1 - (e - ¢)7]¥ %Y} =
=24(1-¢€9)"2
Therefore, we have to differentiate with respect to ¢(u) four times,

until we arrive at an expression in the denominator, which tends to non-zero

value, when é(u) — O.

Let us now compute the limits of the derivatives of the nominator of
the expression (78), when é(u) approaches zero:

(83)  lim{arac{(— 2¢* + 6€° — 6e® + 2e' — 14e% + 28e"¢ — 14e% + Te'e? — 49e%¢ + 42¢°¢? + 35¢%° —
i(L;)Oe_;e'g + 26" + 8e%6* + 70e%" — 10e¢” — 14e%6° — 426%° + 36° + 7e%6® + 14e*6® — e¢” — 2e%¢")x
x(1 - eZ)l/Z + 264[1 —(e- e-)z]w 2}} =0,

(84)  lim{arac{(- 14e° + 28¢” - 14¢° + 14e*c — 98e% + 84e®¢ + 105€%” — 210e’¢? + ...)x(1 — &) % +
+e ((?45 E 28e” + 14e° — 14e*s + 84e% — 70e% — 84€%* + 140e’¢* + ...)[1 - (e — &)1V 33} = 0.

(85)  lim{oroe{(14e" - 98e° + 84e® + 210e% — 420e"¢ +...)(1 — €2 ? + (14e* + 98¢ — 84e® —
-e(i%eef’% +. . )[l-(-&TY31 =0,

(86)  lim{arac{(210e® — 420¢” + 48¢ + 192e¢ + 1680e% —...)(1 — €%)!'? + (— 196¢° + 336e + 196e*¢ —
—E(ijz)()_é:%' +.)[1= (e - 6)?1M2 + (- 14e® + 98¢’ — 84e° + 14e*6 — 29465 + 420e% +...)x
x[1-(e—é)?] Y%} =6(8 +24e° + 3eh)(1 - ) ~V2

This is the fourth differentiation of the nominator of the expression

(78). Consequently, the L*Hospital’s rule for resolving of indeterminacies of

the type 0/0, enables us to compute the two-limits transition:

(87) lim [ lim lg4+1(e,e,n)] = lim lg441(e,6,n = 3)] = lg441(e,6 =0,n=3)] =
éu)->0n—3 é(u) -0
= (67/24)(8 + 24e* + 3e*)(1 - e%) "Y1 - €?) " "2 = (n/4)(8 + 24e* + 3e*)(1 - %)~ V2,
where the above solution (87) follows from the equalities (82) and (86). And
also we have recovered the multiplier z(1 — e?) ~ ¥ 2 according to the
expression (78). The evaluation (87) coincides with the right-hand-side of
the solution (76) and implies that no matter which limit transition é¢(u) — 0
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or n — 3 will be taken first. That is to say, the two-limits transitions
lim lim and lim lim are equivalent in the considered by us

éu)y—0 n—>3 n—3 ¢éu)—0

situations. This also confirms again, that the relation (12) may be used for
evaluation of the integral 1o 4+1(e,é,n) in the cases when n = 3 and/or é(u) =
= 0 through the application of the L’Hospital’s rule for computing of
indeterminacies of the type 0/0.

2.1.7.Casen=3,e(w)=0,é(W#0 =>e(u)—¢éu)#0
A direct computation from the definition (4) gives:

(88) lp.4+1(e=0,6n=3) ET(l —éc0sp) " dp = Ay(—¢,0) = (2 + 36%)(1 - ¢°) "2,

(formula (23) from paper [5] with the replacement e(u) — — é(u)).

We may also evaluate this integral by another way, using the
solution (74), where the transition n — 3 is already performed. And where
we are allowed directly to set e(u) = 0 (simultaneously preserving é(u) # 0),
because e(u) does not take place as a factor into the denominators. The
result is:

(89) lim [ limlIg4.(e.é,n)] = —mé(-26° - 3e%)e 41 -¢%) "2 =n(2 +36)(1-¢) "7
eu)—->0n—3

which coincides with the above evaluation (88). Consequently, we again
arrive at the conclusion that no matter which of the transitions n — 3 or
e(u) — 0 must be realized at first. The expression (12) also may be useful
(i.e., to make sense) for the analytical evaluation of the integral Iy .4+1(€,é,n)
for n = 3 and/or e(u) = 0, if the corresponding two-limits n — 3 and e(u) —
— 0 are performed.

2.1.8.Casen=3,e(u)=¢é(u)=0 =>e(u)—¢e(u)=0

Obviously, in this most simple case lg_4+1(e = 0,6 = 0,n = 3) = 2x.
The same result follows from the expressions (76) and (88), if we take
e(u) — 0, or é(u) — O, respectively.

All the above considerations, made in the Cases 2.1.1 — 2.1.8,
support the statement that the linear relation (12) may be used also in the
situations when some or all of the quantities e(u), ¢(u) and n — 3 are equal to
zero. It is enough only to apply the L’Hospital’s rule (theorem) for resolving
of indeterminacies of the type 0/0. It seems out, that there is no matter what
must be the order of performing of the needed transitions e(u) — 0,
é(u)y > 0andn— 3.
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3. Conclusions

In the present paper we have resolved analytically the integral Io-
4+1(e,€,n), given by the definition (4). A similar approach for an analytical
evaluation of the other integral Iy -2 +3(€,é,n), described by the definition (5),
will be applied in a forthcoming paper [9]. Such calculations split into many
particular cases. This situation is caused by the vanishing of the
denominators of some terms in the final or/and intermediate results for
certain values of the eccentricity e(u), its derivative é(u) and the power n. It
is remarkable that all these solutions can be expressed by means of a single
common formula. The essential point is that such divergences may be
overcome with the help of the L’Hospital’s rule for resolving of
indeterminacies of the type 0/0. For this reason, the application of the
solutions into the subsequent calculations is simplified to some extent,
because there is not already need to consider every case in a separate way.
Of course, having in mind the corresponding limit transitions, when we have
dealing with the singular points. The generalized in such a manner solution
for the integral 1y 4+1(€,é,n) is given by the formula (12). The corresponding
to the integral 1o -2 +3(e,é,n) solution is derived in paper [9].

The basic motivation to establish the analytical solutions of the
integrals lo.4+1(e,é,n) (definition (4)) and lo-2+3(e,é,n) (definition (5)) is to
give the answer of the question whether the integrals lq.(e,e,n) (definition
(1)) and lo+(e,é,n) (definition (2)) are linearly dependent functions of e(u),
é(u) and n or not. The standard approach to resolve this problem is to
compute the corresponding Wronski determinant and to evaluate its
equalization/non-equalization to zero value. In the process of realization of
this procedure, there arises the necessity of knowledge of the analytical
solutions of these integrals o4 +1(€,,n) and lo 2 +3(€,é,n). It is worth to note,
that in the present investigation we already encounter with the property that
for integer n (n = -1, 0, 1, 2, 3) the integrals lo.(e,e,n) and lo«(e,é,n) are
linearly dependent functions. In particular, formula (61) clearly
demonstrates such a linear relation for n = 3. Therefore, we have a hint to
expect also the existence of linear dependencies between ly.(e,é,n) and
lo+(e,é,n) in the general case, including the non-integer values of the power
n. Such an expectation follows from the property that the viscosity law
n = X" does not impose or require any physically motivated separations of
the powers n (for different families of models of Lyubarskij et al. [1]) into
integer and non-integer values. That is to say, between models with (fixed)
integer n and models with (fixed) non-integer n.
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AHAJIUTUYHO NNPECMATAHE HA JIBA UHTEI'PAJIA,
Bb3HUKBAIIU B TEOPUSTA HA EJIMOITUYHUTE AKPELHMOHHU
JUCKOBE. |V. PEHIABAHE HA EIUH UHTEI'PAJI,
OBE3IIEYABALIl OHEHABAHETO HA ITPOU3BO/JHUTE,
BJIM3ALIU B IETEPMHUHAHTATA HA BPOHCKH

. lumumpos

Pe3rome
HaCTOHLHaTa cTatTusgd C€ 3aHHMMaBa C AHAJIMTHUYHOTO HpeCMSITaHe Ha
OHpeI[CJICHI/ISI I/IHTeraﬂ

2n
[(1 + ecosp)" ~*[1 + (e — é)cosp] ~"~* dg, kbaeTO e(U) ca
0

SKCIIEHTPULIUTETUTE Ha opOuTHTe Ha uyactuimre, é(U) = de(u)/du, u = In(p),
KaTo P ¢ (OKATHHAT MapaMeThp HA CHOTBETHHUTE CJUITUYHH OpPOUTH HA
yactunure. [lapaMeTsPBT N € CTeneHTa B 3aKOHA 3a BUCKO3MTeTa f§ = BX "
KbIECTO X € TMOBBbPXHOCTHATA IUTBTHOCT HA AKPCIUOHHHS JUCK H @ ¢©
A3UMYTATHUAT BIbji1. Hue cMe M3BBPUIMIN WU3YNCICHUATA TPH CIICAHUTE TPH
orparmyenust: (i) |e(u)] < 1, (ii) |é(u)] < 1 wu (iii) |e(u) — é(u)] < 1. Te ca
(Gu3nYecKr MOTHBHpPAHU OT BB3MPUETHS 3a HAIIUTE PA3rJICKIaHHS MOJET Ha
cmayuoxapHyu EMANTHYHH aKpelHOHHH auckoBe Ha Jlrobapcku u map. [1].
Tonsim Opo¥t YacTHH CiTy4yad, B3HUKBAIIU TTOPAIH CHHTYJSIPHOTO TOBEICHHE
Ha HJIKOW YJICHOBE 3a JaJieHH 3HadeHus Ha e(U), é(U), TsaxHaTta pasiuka e(u) —
— é(U) u cTeneHHUs MoKa3aren N, ca JIeTaillIHO U34UCIIeHH. Te3u mpecMsITaHusI
ca U3BBPIICHH 110 JBa criocoba: (i) upe3 dupexmio NonaraHe Ha CHHTYJISIPHOTO
3HAUCHHE B MbPBOHAYAIHATA Je(UHUIMS HA UHTHrpaia, u (i) upe3 rpaHuucH
[pexo/1 KbM TOBa CHHTYJISIPHO 3HAYCHHE BbB BEUE OICHEHHS aHAJTMTHUCH U3pPa3
3a WHTErpaja, TMOJY4YeH 3a pPEryjsipHA CTOWHOCTH Ha ChOTBETHHUTE
NpOMEHJIMBH. B TOCIHenHus Cioy4ail € TBBbPJAE IOJE3HO MPUIaraHeTo Ha
npaBmwioTo Ha JIbommTan 3a pemiaBaHeTo Ha HeompenenaeHoctd ot Buma 0/0.
JIBaTa MO/IX0/1a TaBaT SJHU M CHIIM PE3yJITaTH BbB BCCKH MPOBEPSBAH CIIy4aif,
KOETO OCHTypsiBa IIOTO MPEXOJAbT TMpPe3 CHHIYJISPHOTO 3HAYCHHE [a €
HempekbcHaT. ToBa O3HAuaBa, 4Ye AQHAIUTHYHUTE PEIICHHUS 33 BCHUYKH
(CHHTYJISIpHM M HECHUHTYJISIPHU) CIIydaW MOrat Ja ObJaT KOMOWHHPAHU B €IHA
emuHCTBeHa (Qopmyna. TakoBa eIHO ONHWCAHWE HA PEIICHUETO HAa
rOpeHAITMCaHKsI UHTErPajl, ¢ TBbP/E YA00HO 3a Cilydasi, KOrato Ta3u GpopMmyia
ce mpuiara 3a MPOBEPSBAHETO HA JIMHEWHATa 3aBUCHMOCT/HE3aBUCHMOCT Ha
KOe(DUIMEHTHTE, BIHM3AllM B WICHOBETE HAa JWHAMHYHOTO YpaBHEHHE Ha
CITUTITHYHUS AKPEIIHOHEH JTUCK.
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