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Abstract

The present investigation encloses the started in the earlier papers [3] and [4]
analytical evaluations of some kinds definite integrals. These solutions are necessary steps
towards the revealing the mathematical structure of the dynamical equation, governing the
properties of the stationary elliptical accretion discs, which apse lines of all orbits are in
line with each other[5]. Though the considered here task, at first glance, may seem as a
purely mathematical one, there are some restrictions of physical nature on the variables,
entering as arguments into the integrals. In this paper we resolve analytically the following
two definite integrals, including into their nominators (as a factor) the logarithmic function
In(1 + ecosg). Concretely, we find in an explicit form the solutions of the integrals Li(e,é) =

Ezf[ln(l + ecosp)] (1 + ecosp) "'[1 + (e — é)cosp] ~' dg, (i =0,..., 3),

and Kj(e,é) Ezf[ln(l + ecosp)] [1 +(e — é)cosp] ' dp, (j=1, ..., 5).

Here we have used the following notations: ¢ is the azimuthal angle. The integration over ¢
from 0 to 2z means an averaging over the whole trajectory for each disc particle. Each
such particle spirals inward to the center of the disc, moving on (quasi-) elliptical orbits
with focal parameters p. These parameters p are allowed to vary for different elliptical
orbits.In the our approach of computations, we treat e(u) and é(u) as independent
variables. The physically imposed restrictions (which, to some extend, lead to
simplifications of the problems) are |e(u)] < 1,|é(u)] < 1 and |e(u) — é(u)] < 1 for all
admitted values of u. That is to say, between the innermost and outermost orbits of the disc.
Consequently, the established in this paper analytical solutions for the integrals Li(e,é),



(i=0,..,3)andKeé), (j=1, ..., 5), are, probably, not the most general ones, even in the
domain of the real analysis. But nevertheless, they are sufficient for our aim to simplify the
dynamical equation.

1. Introduction

Recent investigations ([1] — [4] and the references therein) have
shown that it is possible to simplify to some extend the dynamical equation
of the stationary elliptical accretion discs, having apse lines of the particle
orbits in line with each other. This class of models, and, correspondingly,
the accompanying their description dynamical equation, was developed by
Lyubarskij et al. [5]. The simplifications, adopted for such models, allow to
write the later equation as a second order ordinary differential equation.
According to the theory of the ordinary differential equations, its solution
exists and is unique. Of course, under given physically motivated suitable
initial and boundary conditions. We underline that our up to now, and also
forthcoming investigations are dealing only with the subclass of the
stationary accretion flows. That is to say, for simplicity restrictions, we
select only this part of the models, considered by Lyubarskij et al. [5],
which does not concern the evolution of discs with the time. We shall not
discuss here how the knowledge of the solutions for the stationary discs
may hint the finding of the solutions of the dynamical equation in the non-
stationary case. The property, that the space structure of the elliptical
accretion disc (having, as we just stressed above, characteristics which do
not evolve with the time) is described mathematically by an ordinary
differential equation, stimulates our intention to try to solve it analytically.
Or simplify it, by means of analytical transformations, to a form, which
reveals in a more clear way its physical and mathematical interpretation.
This situation is, evidently, much more easy for an analytical treatment, than
the case when the particle orbits of the elliptical discs do not share a
common longitude of periastron. Then the dynamical equation, governing
the structure of the accretion flow, is, generally speaking, a partial
differential equation [6]. It is known that the partial differential equations, in
contrast to the ordinary such, do not posses guarantees that their solutions
are unique, if the later exist at all!

During the process of finding of linear relations between the terms,
entering into the dynamical equation of the disc, we strike with the necessity
to compute the following two kinds of integrals:



@ Li(e,e) E:fn[ln(l +ecosp)](1 + ecosp) "'[1 + (e - é)cosp] ' dp ; i=0,...,3,

2 Kj(e,e) = I[In(l +ecosp)][1 + (e —é)cosp] dp; j=1,...,5.

In an earlier paper [4], we have already evaluated analytically the
“initial” integrals Lo(e), Ko(e) and Kj(e,é), considered as starting points into
the recurrence relations, which enable us to solve the integrals with i =1, 2,
3andj =2, ..., 5. We rewrite here these solutions:

(3)  Loe)=-2x(1-€) " "An{[L+ (1-e)"*I2(1 -] "} ([4], equality (53)),

(4)  Koe)=2zIn{[1+ (1 -eAY?/2};  ([4], equality (54)),

(5) Ky(ee)=2x1-(e-é)’] YAn{{2 - 3e” + &* + 3ec — 2e% — &* + &%’ +
+(-2+2e°—3ec+e)(1-e)V?+ (-2 +2e%—ee)[1 - (e - €)M 2 +
+(@2-e+ee)(l-e) ' L-(e-¢) 1" He-o) [L-(1-e)" ] (14,

equality (116)).

For further use, it is helpful also to adduce the definitions of the
following three integrals Ai(e,é), (i = 1, ..., 5), Jj(e.é), 0 = 1, ..., 4) and
Hije,e), =1, ..., 4):

6) Ao E:fn[l +(e-é)cosp] 'dp; (i=1,...,5),
(M) Jiee) E:f[(l +ecosp) [1+ (e-é)cosp] Vdp: (j=1,...,4),

(8) Hi(e,¢) ;Zof(l +ecosp) [1+ (e-é)cosp] tdp; (=1, ..., 4).

The analytical evaluations of the later three integrals (6) — (8) were
derived and discussed in paper [3]. It is worth to note, that the integration
over the azimuthal angle ¢ in the above written integrals (1) — (8) is a
consequence of the angle averaging over the each particle orbit in the
interval ¢ € [0, 2z]. We have also to stress, that the applied in the next
chapters approaches for analytical evaluations of the integrals Li(e,¢) and
K;j(e,é) are useful for higher integer values of the powers of the denominator
[1 + (e — é)cosp]. That is to say, for i > 3, or j > 4. But we shall restrict us
only to those generality levels, which are enough to solve the considered by
us particular problem of analyzing the dynamical equation of the stationary
elliptical accretion discs. We do not set ourselves as an object to solve the
complete mathematical task for all i and j.



2. Analytical computation of the integral K,(e,¢) = f[ln(l +
+ ecosp)][1 + (e — é)cosp] ~ dp
It is appropriate to begin the evaluation of the integrals Kj(e,é), (j =

=2, ..., 5) (using correlation relations), from the integral K(e,é), not from
the integral Ks(e,é). Hence, according to the definitions (2):

9 Kufed) = [lin(t + ecosp][1 + (e~ excosy] 2 =
= (e~ 7I[1 - (e~ Fcostyllin(L + ecosp)l[L + (e - )cose] " dp +
(o= &) llin(1 + ecospILL + (e - e)cose] -
- (e~ &) f(sing)In( + ecos][1 + (e - e)cosg] [ + (e - eoos] =
== (e-¢) Ky(e.d) + (e-¢) ‘Zzt{itn(l +ecosp) dp — (e — &) "?Ky(e.6) + (e — &) "*Ky(e.¢) -
(e~ &) *H{[1 + (e~ eIcosy] - IHL + (e - oosg] “[In( + ecosy)] d +

+ [el(e - e')]:fn(l - cos?p)(1 + ecosgp) "[1 + (e — é)cosp] L dg =
= (e - &) [Ka(e.6) — Ku(e,6)] + {(e” - D/[e(e - &)1} u(e.) + [el(e - )] As(e.é) -
-(e-¢) ‘Zz{i[l + (e —é)cosp] - T} + (e - ¢)cosg] " dp = (e - €) "[Ko(e:d) — Ka(e,)] +

+{(e® - 1)/[e(e — &)]}i(e,e) + [e(e - &)] *As(ee) - 2n(e — &) "2 + (e — &) “*Aq(e,é).

This relation gives the final expression for the integral Kz(e,e).Using
the already computed expressions for K;(e,é) (see equality (5)), Ji(e,é) (see
equality (27) from paper [3]) and Ai(e,é) (see equality (7) from paper [3]),
we are in a position to write the explicit analytical solution for Ks(e,é).
Finally, we obtain that:

(10)  Ky(ee) =2a[1 - (e-¢)?] ¥ AUn{{2 - 3e? + e* + 3e¢ — 2% — &* + &%¢” +
+(-2+2e°—3ec+ (1 -e)2+ (-2 +2e*—ee)[1 - (e - )]V 2 +
+(2-e?+ee)1-e)Yl-(e-e&) 1"} e—-¢) [1-(1-e)Y] - 27ee 1 - (e - &) Y2+
+2n(e—e—e+e?e)e M (1-e) "Vl (e—-¢)’ P+ 24l - (e-¢)] "

We shall not perform here the tedious algebraic computations,
proving in a rigorous mathematical manner, that the written above analytical
solution (10) for the integral Ky(e,¢) remains valid even in the cases, when



e(u), and/or e(u) — é(u) are equal to zero. These particular values are
preliminary excluded in the derivation of the equality (10). Because they
enter as factors into the denominators of some of the intermediate terms.
Correspondingly, this situation leads to the necessity to examinate the
indicated cases in a separate way. The resolving of the designated problem
may follow the analogous procedure, which is called to overcome such
difficulties, appearing under the analytical solving of the integrals Ki(e,é),
Li(e,e), (1=0, ..., 3), Aie,é), (1=1,...,5), Jj(e.é), ( =1, ..., 4), Hj(e,é), (j =
=1, ..., 4) (see papers [3] and [4]). Especially, the used approach is based
on the application of the L’Hospital’s rule for resolving of indeterminacies
of the type 0/0. We shall return later in this paper to the arising problem.

3. Analytical computation of the integral K,(e,¢) = fn[ln(l + ecose)][1 +
+ (e — é)cosp] 2 do
Let us compute the integral Ks(e,¢). According to the definition (2):

(11) Ksee)=-(e-¢) -ZOI El — (e - é)%cos?p][In(L + ecosp)][1 + (e — é)cosp] ~> dg +
+(e-9) ,§£"[In(1 +ecosp)][1 + (e — é)cosp] 2 dg —
-(e- é)‘lzfzsin(p)[ln(l + ecosp)][1 + (e - é)cosp] ~3 d[1 + (e — é)cosyp] =
=-(e-¢) Koled) + (e - é)fzzfz[l + (e — é)cosp] — 1}{[In(L + ecosp)][1 + (e - ¢)cosp] ~* dy +
2

+ (e —¢) " %Ks(e,8) + [2(e — &)] 4 (sing)[In(1 + ecosp)][1 + (e — é)cosp] ~2 :-

—ngcow)[ln(l +ecosp)][1 + (e — é)cosp] 2 dop + ejﬁsinzga)(l +ecosp) ~[1 + (e — é)cosp] “2dp} =
=— (8- ¢) MKo(e,0) + (8 - ) PKu(e,6) — (8 - ) Ko(e,0) + (e - €) "*Ka(e,¢) - [2(e - ¢)] Ku(e,d) +

+[2(e = 6)?] " *Ky(e,6) + e[2(e - &)] ’i{n(l +ecosp) "1 + (e — é)cosp] 2 dg +
+[2e(e - ¢)]” 12{:[[(1 — e%cos?p) — 1](1 + ecosp) ~[1 + (e — é)cosgp] 2 dp =
= (e - &) [Kas(e,e) — (3/12)Ky(e,e) + (1/2)Ky(e,8)] - (1 — €%)[2e(e - ¢)] ‘1%7[[1 + (e — ¢)cosp] 2 dp —

—[el(e - e')]zf{[l + (e — é)cosp] — 1}(1 + ecosp) ~Y[1 + (e — é)cosp] ~2 dp} +



+ [2e(e = &) *%ﬁl + (e = é)cosg] 2 dg — [2(e - ¢)1] *Zlof{[l + (e—é)cosp] - 11 + (e — )cosp] 2 dg =

= (e - &) "H{Ks(e,6) - (312)Ky(e,8) + (1/2)Ky(e,6) + [(1 + €2 — ee)/2]As(e.é) +

+ [(1 - e)2][3u(e.6) - Ja(e.&)] - (L/2)Au(e.€)}-

Transferring the unknown function Ks(e,é) from the right-hand-side
to the left one into the above relation, we can write Ks(e,¢) through the
already known functions:

(12)  Ks(e,e) = {21 - (e - ¢)1F HBK(e,6) - Ky(e,8) — (1 + ° — e)A(e,6) +

+ Ay(e.e) + (1 -e)[Jx(e.6) - (e, &)}

In the above formula, functions Kj(e,é) and K(e,é) are given by the
analytical solutions (5) and (10), respectively. The other integrals in the
right-hand-side of (12) are evaluated in the earlier paper [3], as follows:
Ai(e,e) — formula (7), Ax(e,e) — formula (8), Ji(e,é) — formula (27) and
Jo(e,é) — formula (34). The numerations of the later formulas correspond to
[3]. The substitution of these expressions into (12) gives the explicit form of
the solution (12) as a function of the eccentricity e(u) and its derivative é(u).
After some simple algebraic transformations, we are in a position to write
the final analytical solution for the integral Ks(e,é):

(13)  Kasee) =a[l-(e— &)1y Y22 +€® - 2eé + ¢))Inf{{2 — 3e? + &* + 3eé — 26% — &% + 26> +

+(-2+2e°-3ec+ ) (1-e)Y2+ (—2+2e%—ed)[1- (e - &) Y% +

+(2-¢’+ee)(1-e) ' [L- (e~ ¢)] e -¢) Jn-a- e’ ]+

+m(— e + 26" — e® — 2ee — 267 + 4e’e — 2e%6° — Be’e® + 206 + 4e%¢° — %6*)e 1 - (e - é)zl Sz

+ (e’ — 26" + &° + 266 + €% — 3’ — 3¢” + 3e*¢’ + e’ — %% 21 —e?) TV 1 - (e-¢)7] C +

+3a[1 - (e-¢)’] 72

4. Analytical expressions for the integrals Ky(e,é) = f[ln(l + ecosp)][1 +

+(e—é)cosp] “dp  and Ks(e,é) Ezfn[ln(l + ecosp)][1 + (e — é)cosp] ~° dp

The computational procedure of the integrals Ky(e,é) and Ks(e,é)
exactly resembles to that, which we described earlier in details, when we
solved the integrals K(e,é) and Ks(e,é). As it can be established from these
calculations, the applied approach is to develop the integrands from the
corresponding definitions (2) in such a way that into the right-hand-side to
appear the same integral, multiplied by a factor different from unity. The
later condition is crucial for the method of computation to work, because the
integral, for which we are seeking, may be transferred into the left-hand-side
of the equality. The result will be that in the left we shall have only the
unknown integral, multiplied by a factor different from zero. Into the right-
hand-side remain integrals of the same type (2), but with index j less then

10



that of the integral under resolving. The formers are already solved. This is

essentially a recurrent procedure. Of course, into the right-hand-side also

present integrals of the types Ai(e,é) (6) and Jj(e,é) (7), but their analytical
expressions are successfully computed in an earlier paper [3]. Therefore, it
is only a matter of tedious algebra to resolve analytically the integrals

Ka(e,é) and Ks(e,e), starting directly from their definitions (2). For such

reasons, we were motivated to skip here the detailed writing (as we have

already done for Ky(e,é) and Ks(e,¢)) of the intermediate steps, leading to
the solutions of K4(e,¢) and Ks(e,e). We shall give only their expressions
through the integrals Kj(e.e), j =1, 2, 3), Ai(e,é), (i=2,3,4) and Jj(e,é),

(J = 2, 3, 4), and the corresponding final analytical formulas for them. We

underline that the analytical solution for Kj(e,é), (j =1, ..., 5), Li(e.é), (i =

=1, 2, 3), Aieé), (i=1, ...,5), Jjeé), =1, ..., 4) and Hj(e,é), = 1, ...,

4) are also tested, by means of numerical methods, for a dense enough two-

dimensional lattice with respect to (e, ¢). In conclusion, we write down the

following results:

(14)  Kue.0) = {3[1- (e - &)} {BKs(e,6) — 2K(e,€) — (1 + € — eé)As(e.é) + Ag(e,é) +

+ (1-€)Jse.¢) - Je )}

It remains to substitute the corresponding analytical expressions for
Ks(e,é) (formula (13)), Ky(e,é) (formula (10)), Az(e,é) (formula (8) from
[3]), As(e,e) (formula (16) from [3]), Jz(e,é) (formula (34) from [3]) and
Js(e,é) (formula (42) from [3]). The conclusive result from such complicated
evaluation can be written as follows:

(15)  Ky(e.e) = n(2 + 3e® — 6eé + 3¢%)[1 — (e — €)°] - " 2In{{2 — 3¢ + &* + 3eé — 2e%¢ — &% + %% +
+(2+28%-3ec+ ) (1-e)Y2+ (—2+2e—ed)[L-(e - )V % +
+(2-e*+ee)(1-e)1-(e- ¢ He-e) [L-(1-€)"] "} +
+ (m3)(~ 2e® + 4e® — 2e" — 3e%6 — 5e’e + 8e%6 — 6ee? — 5e’6? — 12e%6° — 26° +
+96%° + 8e%° — 3ee* — 26%6Me I [1 - (e — 6)7] Y2 + (n/3)(26% — 66° + 6’ — 2e° + 3e%6 + 4’ —
—17¢% + 10e% + 6ec” + £%¢” + 13°¢” — 20e7¢” - 116° — 126°¢° + 3e¢® + 20e°¢° + 17e¢" -

—7e%* — 10e%" — 46° + 26%6° + 26" (L -eD) TV 1= (e - &) >+ (2al3)[L- (e - &)*] ¥ +
+ (nl3)(11 + 46% — 8eé + 41 - (e - ¢)] >

The explicit form of the integral Ks(e,¢), as a function of the
eccentricity e(u) and its derivative é(u), may be written in a similar way. At
first, the direct processing of the definition (2) for the integral Ks(e,¢) leads
to the intermediate evaluation for Ks(e,é), analogous to the relation (14) for
Ka(e,é):

(16)  Ks(ed) = {411 - (e — &)1} '[7Ku(e.€) — 3K5(e,é) + (e — €)(1 — eDe " y(e.) +

+ Ag(e,6) — (2e — 8)e “TA4(e,€)].

Like to the previous case above, the substitution into the relation
(16) of the analytical solutions for K4(e,é) (formula (15)), Ks(e,é) (formula
(13)), As(e,e) (formula (16) from [3]), As(e,e) (formula (9) from [3]) and
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Ju(e,é) (formula (47) from [3]), gives, after some tedious algebra, the final
explicit analytical evaluation:

(A7) Ks(e.6) = (w/4)(8 + 24€® + 3¢* — 48e¢ — 126 + 24¢% + 18e%¢* — 12e6° + 3*)[1 - (e — ¢)7] "% >
xIn{{2 - 3e? + ¢* + 3eé — 2e% — &> + e%° + (- 2 + 26’ — Beé + ) (1 — AV 2 +
+(-2+2e%- ec)[1-(e- M+ 2-e® +ed)(1-eD)Y 1 - (e - &) 27}(e —6) "%
x[1—(1- )Y~ + (a/6)(— 3e* + 96° — 9e® + 3e'% — 4% — 106% + 32e’¢é — 18e% — 6% — 4e*e? —
—35€%” + 45e%6% — 12e¢® — 16e%° — 60e’é” + 39e%* + 25e%6* + 45e%" — 18e6° — 16e%° — 18e%¢° +
+3e%6° + 3e%%)e [1 - (e — 6)?] 772 + (n/12) (66" — 24e° + 36€® — 24e™ + 6e™? + 8e’¢ + 18e% —
— 102676 + 118e% — 42e™6 + 12e%° + *6® + 88e%6? — 227e%¢% + 126e™°6? + 246’ + 16€¢° —
—35e°° + 205e76® — 210e%° — 506" — 138e%” + 48e”s” — 70e%" + 210e%¢* + 182e6° — 4083 —
—16€%° — 126€"¢® — 55¢° — 4e%6° + 17e%6" + 426%° + 9ee” — 3e%¢” — 6e%6")é ~x
x(1—e) "Y1 - (e - &)’ * + (5a/12)(10 + 11e% — 22e¢ + 1164)[1 - (e — 6)*] %

2n
5. Expressions for the integrals Ki(e.¢) = [In(1 + ecosp)][1 + (e — é)cosp] ' do,
0

(i=1, ..., 5) for some specific values of their arguments e(u) and é(u)

Let us, at first, introduce a useful notation, with a view to shorten (in
some cases) the writing of the analytical formulas. More specially, we intent
to denote with the function Z(e,¢) the argument of the logarithmic function,
which enters both into the intermediate calculations and the final solutions
for the integrals Ki(e,¢), (i =1, ..., 5). This argument is the same for all i =
=1, ..., 5 which makes it reasonable to introduce into use one more
notation into the system of notations, used in the present paper. We stress,
however, that we shall skip such a shortening of the notations (as we already
have done until now), if we want to write, as possible, but more tedious, in
the “most explicit” form the dependence of the expressions on e(u) and é(u).

Therefore, we define that:

(18) Z(ee)={2-3e’+e* +3ec—2e% — & +%® + (-2 + 26— Bee + A)(1 - &)V ? +
+(-2+26°—ed)[l-(e-e)]" 2 +
+ (2 _ eZ + eé)(l _ e2)1/2[1 _ (e _ é)z]ll 2}(e _ é)—Z[l _ (1 _ eZ)l/ 2] —l.

We shall write the above function for two different pairs of its
arguments, namely: {e, ¢ = 0} and {e — ¢, — ¢}. These combinations will
arise during the further use of the notation formula (18):

(19) Z(Ee=0)=2[2-3"+e'-2(1-€)* % e [1-(1-e)]?,

(20)  Zz(e-é,-¢)={2-3e*+e* +3ec—2e% —&* + @%® + (- 2 + 2e* — Bec + ) (1 - €)Y 2 +
+(—2+2e%—ed)[l-(e-e&) ]2+ 2-e?+ee)(1-e)VLl-(e- &)V 1 -[L-(e -
_é)z]l/z}-1.

Until now, we have computed analytically Ki(e,é), (i = 1, ..., 5) under
the condition é(u) # 0. For i = 2, 3, 4 and 5 the derivative é(u) of the
eccentricity e(u) presents as a factor in the denominators of some of the
summands in these expressions. Therefore, it is not reasonable to calculate
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Ki(e,0), (i = 2, ..., 5) simply setting ¢(u) = 0 into the already calculated
results for this functions, valid for é(u) # 0. Of course, we may attempt to
use the L’Hospital’s rule for evaluating of indeterminacies of the type 0/0,
but this approach (if it works) will probably be too tedious for our
exposition. We shall use the same computational scheme for evaluating of
the integrals Kj(e,0), (i = 2, ..., 5), as in the previous cases, when é(u) # 0.

But the recurrence formulas will now be established for the specific case

¢é(u) = 0. Before to begin with this procedure, we note that the just discussed

problem, concerning the nullification of é(u), does not play a role in
deriving of K;(e,0) from the expression (5) for K;(e,¢). We are able, without
any contradictions, to set ¢(u) = 0, to obtain that:

(21) Kye0)=2z(1-€) Vn{[2-3e’ +e* - 2(1 - -2(1-e?)¥? +
+(2-e)(1-e]e [1-(1-e)" "} = 2a(1 - &%)V n{2[2 - 3¢? + ' — 2(1 — €)Y ?]x
xe [1-(1-e)"3 "1} = 22(1 - €)Y %InZ(e,0).

It is easily seen that limK,(e,0) — 0, when e(u) approaches zero.
Now, we start to the direct evaluation of the integral Ky(e,0):

2

(22)  Kye0) = Izcoszfp +sin’p)[In(1 + ecosp)](1 + ecosp) ~2 dp =
=— e‘zzfn(l — e%cos?p)[In(1 + ecosp)] (1 + ecosp) 2 dg + e‘zzfn[ln(l + ecosp)](1 + ecosp) 2dyp -

- e‘if(singo)[ln(l +ecosp)](1 + ecosp) % d(1 + ecosp) =

=—e %K (e,0) + e 2Ko(e) — e *K,(e,0) + e "%K,(e,0) —

- e‘ifn[(l + ecosp) — 1][In(1 + ecosp)](1 + ecosp) ~* dg +20In(1 — cos’p)(1 + ecosp) "% dp =
= e %Ky(e,0) — 2e 72Ky (e,0) + e ?Kq(e) — e 2Ky(e) + e 2Ky (e,0) + Ji(e,0) +

+ e‘zzf[(l - e%cos’p) — 1](1 + ecosp) "> dyp =

=—e72J,(e,0) + e "2K,(e,0) — e “2Ky(e,0) + J1(e,0) + e 2Ay(e,0) — 2a/e? + e “2Ay(e,0) =
= e ?K,(e,0) - e "?Ky(e,0) + 2e "2A,(e,0) + (€2 — 1)e ~2J,(e,0) — 2x/e?.

This relation gives a possibility to find an analytical solution for the
unknown function Ky(e,0), because the other functions of the eccentricity
e(u) are already known: K;(e,0) from formula (21), Ai(e,0) (formula (20)
from paper [3]), and Ji(e,0) (formula (35) from paper [3]). Taking into
account these relations, we obtain:

(23)  Ky(e,0)= (1-€*)'[Ky(e,0) - 2z(1 —€?) Y%+ 27] =
= (1-¢€°) "[22(1 - €~ Y4nZ(e,0) - 22(1 —e*) " M2 + 24] =
=2n(1-€) ¥ {In{2[2 -3’ +e' - 2(1-e) e 1 -(1-eH)Y] 1} -1+ (1-eD)V .
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We underline that this result does not require the condition é(u) # 0.
Just the opposite is true! At the very beginning of the computations, we set
é(u) = 0. We shall not write here the proof that the relation (10) for Ky(e,é)
(derived under the suppositions e(u) # 0, é(u) # 0 and e(u) — é(u) # 0) in the
limit é(u) — O coincides with the above relation (23) for Ky(e,0). This
statement can easily be checked by the means of the L’Hospital’s rule.
Finally, we note that the transition e(u) — 0 in the formula (23) leads to a
vanishing result: K(0,0) = 0, which corresponds to the expected value from
the definition (9). Despite of the our skipping of the detailed considerations
of the behavior of the established relations, under the transitions e(u) — O,
é(u) — 0 and [e(u) — e(u)] — 0, we nevertheless stress that such
considerations are important. They give a certainty that the transitions
through these singular points are continuous. Such a detailed treatment was
done for the integrals Ai(e,é), (i=1, ..., 5), Jj(e,é), = 1, ..., 4) and Hj(e,é),
(=1, ..., 4) in paper [3]. But with a view to give a shorter description of
the procedures of solving of the integrals Ki(e,é), (i =1, ..., 5), we do not
write out such tedious computations, introducing the use of the L’Hospital’s
rule for resolving of indeterminacies of the type 0/0. Before to proceed
further, we emphasize that the above-mentioned remarks, concerning the
solution of the integral Ky(e,¢), are also remaining valid for the solutions of
the “higher order” integrals Ki(e,é), (i = 3, 4, 5). We now begin with the
description of their computation, and we shall not return to the discussion of
such similar matter later.

2

(24) Kse0)= In(coszrp +sin%p)[In(1 + ecosp)](1 + ecosp) "% dgp =
=- ezzle —e%cos?p)[In(1 + ecosp)](1 + ecosp) 3 dg + e’zszln(l + ecosp)](1 + ecosp) ~2 dyp —

- e‘ljzsingo)[ln(l + ecosp)](1 + ecosp) ~* d(1 + ecosp) = ... =

= [2(1 - 9] {3Ko(e.0) - Ky(e.0) = (1 + e)Ao(e0) + As(e.0) + (1 - €’)[(e.0) - Ji(e )]} =

=[2(1 - e*)]” {{6a(1 - €®) ¥ [InZ(e,0) - 1 + (1 — e2)¥?] - 22(1 - e%)(1 - €?) ~¥“InZ(e,0) -

-2n(1+€)(1-€) "2 +27(1-&’)(1-e) ¥+ (1-€))[r(2 + ))(1-€) V-

—2r(1-e?)(1-e?) ¥}

In the above equality the symbol *... ="denotes some of the skipped
intermediate calculations. There are used also the already available solutions
(23) for K5(e,0) and (21) for Ky(e,0). From paper [3] we apply the following
formulas: (20) for Ai(e,0), (21) for A,(e,0), (28) for J;(e,0) and (35) for
Jo(e,0), respectively. Further evaluations lead to the seeking for final
analytical result for the integral Ks(e,e = 0):
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(25)  Ks(e,0)= (/2)(1 - e?) (4 + 26)In{2[2 - 3e* + ¢ - 2(1 - €)¥ e "1 - (1 - &)Y "1} -

—6-e?+6(1-e’)"%.

To evaluate analytically the remaining two integrals K4(e,e = 0) and
Ks(e,e = 0), we proceed in a very similar way. Here we only sketch these
calculations.

(26)  Ku(e0) = [3(1 - )] {5Ks(e,0) — 2Ky(e,0) - (1 + €%)Aq(e,0) + Ag(e,0) +
+(1-€*)[J5(e.0) - Jo(e,0)]} =
=[3(1 - %] (=/2)(1 - €3]~ ¥?[(20 + 10e?)InZ(e,0) — 30 — 5e? + 30(1 — %" ?] -
—47(1 - )1 -e)"¥InZ(e,0) - 4x(1 - e?)(1-€*) -1+ (1-e)"?] -
2+ +e)1-ed) 2+ 27(1-eD)(1-€)) T2+
+(1-e)[r2+3e)(1-e) "2 - z(2 +e)(1-e’)(1-eD) "}

As before, we have applied the already computed results: formulas
(25) and (23) for Ks(e,e = 0) and Ky(e,e = 0), respectively. From paper [3]
we have used the evaluations (21) for Ay(e,0), (22) for As(e,0), (35) for
J»(e,0) and, finally, (44) for Js(e,0). Consequently, the simplification of the
solution (26) may be expressed as follows:

(27)  Ku(e,0) = (/6)(1 —e?) " "?[(12 + 18¢%)InZ(e,0) — 22 — 15¢” + (22 + 8e%)(1 — e9)"?] =
= (2/6)(1 - %)~ "¥(12 + 18e%)In{2[2 - 3e* + e* - 2(1 - D) ¥ e 1 - (1 - )Y} -
—22-15¢% + (22 + 8eH)(1 - &)%),
Correspondingly, the integral Ks(e,é = 0) can be computed by means
of K4(e,0) (formula (27)), Ks(e,0) (formula (25)), As(e,0) (formula (22)
from paper [3]), A4(e,0) (formula (23) from paper [3]) and J4(e,0) (formula
(50) from paper [3]).
(28)  Ks(e.0) = [4(1 - 9] "[7Ky(e.0) ~ 3Ky(e,0) + (1~ €)J4(e,0) = 2A4(e,0) + Aq(e.0)] =

= (n/24)(1 - €%) ~¥?[(48 + 144e? + 18e*)InZ(e,0) — 100 — 150e? — 9¢* — (1/2)(12¢* + 3e*) +

+ (100 + 110e%)(1 - e3)¥?].

Therefore, the final analytical solution for the integral Ks(e,0) is:

(29) Ks(e,0) = (n/48)(1 - e?) ~¥2{(96 + 288¢? + 36e*)In{2[2 - 3e? + * —

—2(1-¢)"%e 7 [1 - (1 - e)"? 7} - 200 — 312¢* — 21e* + (200 + 220e%)(1 — e%)"' %},
where we, of course, have used the short-notation definition (19) for the
function Z(e,0). To conclude the matter, connected with the application of
the analytical solutions of the integrals of the type Ki(e,é), (i=1. ..., 5), we
shall write down in an explicit form some of these expressions (namely, for
i =3, 4 and 5), when the two-arguments pair {e, ¢} is replaced by {e - ¢,
— ¢ }. We do not give here the detailed computations, but the only the final
results, including also the definition (20) for the function Z(e - ¢, — é):

(30)  Kse-é,-¢)=n(2+e*)(1-e?) Y An{{2 - 3e? + e* + 3ec — 26% — &* + %% +

+(—2+2e%—3ec+ )1 -2+ (—2+2e% —ed)[L— (e - e')zgl’2 +

+(2-e’+ee)(l-e)" - (e- ¢y Je H1-[1- (e - &) 1'%} '} +

+m(—e?+2e* —e® + e — 6% + 26% — 36° + 4e%6° — %P 21— €3 "V? + n(e® — 2e* + & — deé +
+ 7% — 3e% — 9e26? + 3e%6% + dee® — e%6%)6 " 2(1—e?) " 1 - (e - &)] 1%+ 3x(1 -} 2

(31) Kye—-¢,-¢)=a(2+3e”)(1-€") "In{{2 -3¢ + &* + 3ec — 26% — &* + &%¢* +
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+ (-2 +2e*—3eé + ézg(l —e)2+ (-2+ 2e’ —ed)[1-(e—&)]Y2 +
+(2-e?+ed)(l-e)L-(e-&) 2 e 1 -[1-(e - &)}~ 1} + (n/3)(2e% — 4€® + 26" —
— 9% + 15e% — 6% + 18e6” — 15e°6? + 6e%6% — 13¢6° + 4e%¢° — 26%6%)6 "3 (1 —e?) "% 2 +

+ (n/3)(- 263 + 6€° — 6e” + 2e” + 9e?¢ — 26e”¢ + 25e% — 8e% — 18eé? + 43e%¢% —

— 37e%% +12e76% — 456%° + 23e%¢® — 8e%6° + 18es” — 5e%¢* + 26%6%)e (1 - ) T [1-(e - )7 V2 +
+ (2/3)(11 + 4e?)(1 - %) 3 + (2n/3)(1 - ) ¥ 2,

(32)  Ks(e—¢,—¢) = (n/4)(8 + 24¢® + 3e*)(1 — e?) ~¥2In{{2 — 3e? + &* + 3e¢ — 2e% — &% + &% +
+(—2+2e°—3ec+ (1 -2+ (- 2+ 287 —ed)[L- (e - )M 2 +
+(2-e+ed)(1-e)"1-(e-¢) 1V e {1 [1-(e-¢)]/} '} +
+ (n/6)(— 3e* + 9e® — 9e® + 3e™” + 16e3¢ — 44e% + 40e¢ — 12e% — 36e%? + 81e*e? — 63e%° +
+18e%? + 48e¢® — 48e3¢% + 42e%° — 12e7¢° — 256" + 2e%6* — 10e%¢* + 3e%*)e "4 (1 - %) "2 +
+ (n/12)(6e* — 24€° + 36e® — 24e™ + 6e™? — 32e% + 126e°¢ — 186e’¢ + 122e%¢ — 30e’e + 72e%6% —
- 269e¢” + 382e%” — 245e%¢? + 60e'°¢? — 96e¢” + 280e°6” — 367e%° + 243e’¢” — 60e%” — 2648%" +
+143ee* — 119e%* + 30e%" +96e¢” — 8e%¢ + 23e%¢° - 6e’e%)e 41— %) U [1- (e-¢)?] Y% +
+ (57/12)(10 + 11€%)(1 - e ~*.

6. Final analytical explicit evaluations for the integrals
Li(e,é) = I[In(l + ecosp)] (1 + ecosp) "Y[1 + (e — é)cosp] ' de , (i =1, 2, 3)

We have already obtained in the previous paper [4] the final
analytical expressions for the integrals Lo(e), Ko(e) and Ki(e,e) (see
formulas (3), (4) and (5), respectively, into the introduction of the present
paper).We have also evaluated in an explicit form the integrals Ki(e,é), (i =
=2, ..., b), (see formulas (10), (13), (15) and (17), respectively). This
circumstance enables us to apply the recurrence relations (formulas (13),
(12) and (11) from paper [4]), which will be sufficient to write explicitly, as
functions of e(u) and ¢é(u) = de(u)/du the unknown functions Li(e,é), La(e,é)
and Ljs(e,e). Strictly speaking, here we do not need to know the full
analytical solutions of the integrals Ks(e,é) and Ks(e,é), because we
interrupt the recurrence chain at the integral Ls(e,é), i.e., we need not to
calculate for our purposes the integrals Li(e,e) with i > 4. Ky(e,é) and
Ks(e,e) are evaluated for other reasons. Therefore, we can write, according
to ((13), paper [4]), that:

(33)  Lu(e.e) = (ele)Lofe) - [(e - &)/e]Ky(e,e) =

=—2zee (1 -€°) "VAn{[1 + (1 - )" [2(1 - )] '} - 2n(e — &)¢ " '[1 - (e - &)7] VX

xIn{{2 - 3e? + e* + 3e¢ — 2e% — ¢* + e%6” + (- 2 + 26> - Bec + ) (1 - A2 +

+(-2+2e°—ed)[1-(e—¢)]V% +

+(@2-e*+ee)(l-e) ' [L-(e- €)1 He-e)[L- (L-e)'] ")

In a fully analogous way, we are able to evaluate the other integrals
L,(e,é) and Ls(e,e), for which we are seeking for. After some simple but
tedious algebra, without using the notation (18) for Z(e,é), we shall give the
final analytical form for the solutions of L,(e,¢) and Ls(e,é). Taking into
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account the recurrence relation (12) from paper [4] and the solutions (10) for
Ka(e,é) and (32) for L,(e,é), we have:
(34) Lyee) = (ele)Ly(e,e) - [(e - €)/é]K,(e,é) =

=278’ 21— ) "VAn{[1 + (1 - )Y A[2(1 - €]} - 2a(e? — &* + 3e’¢ — & — 3e%? + ec®)o 2%

x[1-(e-¢)’1"¥An{{2 - 3¢’ + e* + 3ee — 26% — & + %6 + (- 2+ 26” — 3eé + &))(1 - €))7 +

+(-2+2e°—ee)[1-(e—e) Y2+ (2-€® +ee)(1-e)[1- (e - &)1V (e —¢) %

X[1-(1-e)Y2 71 + 2n(e? — eé)e 2[1 - (e — &)%) V% - 2n(e” — &" — 266 + 2e% + ¢ — €%¢%)é %%

x[L-(e—&)? Y1 -e)"Y2—_2z(e —&)e 1 - (e—¢)"] ™

Similarly, the recurrence formula (11) from paper [4], combined
with the solutions (13) for Ks(e,é) and (34) for Ly(e,e), leads to the
following result:
(35) Ls(e.e) = (elé)La(e,e) - [(e — e)/e]Ks(e,e) =

=-2me% (1 -ed) " YAn{[1 + (1 - )Y ?[2(1 - €9)] "1} — m(2e® — 4e° + 2¢” + 10e”6 — 10e% —

— 5362 + 20%? — 2¢° — 5e?e® — 20e¢° + Bee* + 10e°¢* — ¢° — 2e%6%)¢ ~I[1 - (e — €)% ~¥ *x

xIn{{2 — 36? + e* + 3ee — 2e% — &% + %% + (- 2+ 26° — 3eé + (L — )V 2 + (- 2 + 262 — ed)x

X[L-(e- &%+ (2-€* +ee)(1- )’ [L- (- ¢)7]"He—¢) Y[1-(L-€)"?] T} -

— m(3e® — 66> + 3e” — 3e? + 15e*¢ — 12e% — 3e6® — 15e¢” + 18e%” + 36 + 9e%6® — 12e*¢” — 3ee* +

+3e%")e 1 - (e - ¢)%1 41— e%) "Y2 - n(2e? — 2" + eé + 6% — 36° — e’ + 2e6%)é " 2x

x[1 - (e —¢)?] "% + m(3e - 3e® — e% + 9e*¢ — 2e¢? — 9e’¢? + 3e%%)e [1- (e - ¢)?] Y2

Consequently, the above solution (35) encloses the considered by us
system of analytical solutions for the auxiliary integrals L;(e,é), (i=0, ..., 3)
(see definitions (1)) and Kj(e,é), (1 = 1, ..., 5) (see definitions (2)). As a rule,
these definite integrals turn out to be complicate expressions of the assumed
by us independent variables e(u) and ¢é(u) = de(u)/du. Nevertheless, we are
enjoyed to establish the explicit form of the solutions. With a preliminary
optimism, we postpone the problem of the simplification of the expressions,
where these integrals will enter as auxiliary functions. It is important to
note, that during the process of derivations, it becomes clear that the
computed solutions are unique. That is to say, the application of the
formulas will not lead to bifurcation problems, generated by the established
solutions itself. Another good characteristic of the above considered
solutions is that they passage continuously through some suspected peculiar
points like e(u) = 0, é(u) = 0, e(u) — é(u) = 0, etc. This was discussed earlier
many times, and the answer to the problem was favorable: these peculiar
points do not cause troubles. Such kind of conclusions are essentially
proved by the corresponding L’Hospital’s rule for resolving of
indeterminacies of the type 0/0. Therefore, the established expressions for
Li(e,e), (1=0, ..., 3) and Kj(e,é), ( = 1, ..., 5) may be used without troubles
about these singular points.
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7. Conclusions

The present paper encloses an investigation associated with an
analytical solving of several types of definite integrals. They are considered
to be functions of the eccentricities e(u) and their derivatives é(u) =
=de(u)/du of the particle orbits, moving in the accretion discs with elliptical
shapes. These integrals were not found solved in the existing mathematical
handbooks and reference books in forms, which are appropriate for use,
according to our aspiration to apply them in the theory of elliptical accretion
flows. More concretely, the integrals, which we have considered both in the
present investigation, and in the papers [3] and [4], are Li(e,é), (i=0, ..., 3)
(defined by formula (1)), Kj(e,é), (j = 1, ..., 5) (defined by formula (2)),
Ai(eé), (=1, ..., 5) (defined by formula (6)), Jj(e,é), G = 1, ..., 4) (defined
by formula (7)) and Hj(e,e), ( = 1, ..., 4) (defined by formula (8)). The
situation in our case is that the analytical solutions are intended to be set
into application for resolving of a concrete task. It is connected with the
specific model of accretion discs [5], and introduces some limitations on the
variables e(u) and ¢é(u), which are treated as independent ones. Aside from
the circumstance that, by definition, ¢(u) = de(u)/du. The laters must obey
three inequalities for all values of the independent variable u = In(p), where
p is the focal parameter of the particular particle elliptical orbit). Namely, (i)
le(u)| < 1, (ii) |e(u)] < 1 and (iii) |e(u) — é(u)| < 1. These restrictions arise,
because the variable e(u) is considered as an eccentricity and the stationary
accretion flows in the model of Lyubarskij et al. [5] are a priori, by
hypothesis, excluding any singular behavior of the accretion disc
characteristics. This means that the phenomena like the propagation of
shock waves are not taken into account. Therefore, the above mentioned
constraints (i) — (iii) are, essentially imposed from physical reasons. Of
course, to these must be added also the property that all physical
characteristics in the model of Lyubarskij et al. [5] are described by means
of real quantities. As a consequence, the integrands into the formulas (1),
(2), (6), (7) and (8) include only real functions, and the corresponding
integrals are also real functions on e(u) and ¢é(u). It has to be mentioned, that
such a simplified situation may not occur for models other than [5]. For
example, in the paper of Ogilvie [6] is introduced the notion complex
eccentricity E(r) (where r is the radius-vector), in order to treat the more
general case, when the particle orbits of the eccentric accretion discs are not
sharing a common longitude of periastron. But we are not dealing with this,
very probably, much more difficult for analytical solving problem. It is
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enough only to mention that in the model of Ogilvie [6], the dynamical
equation, governing of the structure of the disc, is, generally speaking, no
more ordinary differential equation, but particular one.

We conclude our remarks, stressing that we have not performed an
analytical solving of the full mathematical problem, concerning the
evaluation of the integrals
Li(e,e), Kj(e,e), Ai(e.e), Jj(e.e), and Hj(e,e), (the indices i and j run the
corresponding values, accepted by us, in the definitions (1), (2), (6), (7) and
(8)). This is done for some particular cases, satisfying the above discussed
restriction, imposed on the variables e(u) and é(u) = de(u)/du from physical
reasonings. The so established expressions for these integrals (see also
papers [3] and [4]) are presenting a complete system of solutions, which is
sufficient for our purposes. It gives a possibility to investigate the behavior
of some other integrals, which directly enter into the dynamical equation for
the elliptical accretion discs, described by the model of Lyubarskij et al. [5].
For this reason, we have named the former five types of integrals “auxiliary
integrals”.
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AHAJIMTUYHO NNPECMSATAHE HA JIBA UHTEI'PAJIA,
Bb3HUKBAIIIU B TEOPUSTA HA EJIMITUYHUTE AKPELHMOHHU
JAUCKOBE. I11. PEHHABAHE HA ITbJIHATA CUCTEMA OT
CIIOMAT'ATEJIHU UHTETPAJIU, CBABPXKALINA
JIOTAPUTMHNYHU ®YHKIIMN B TEXHUTE UHTET'PAH/IN

. lumumpos

Pe3rome

Hacrositero u3cieqBane 3aTBapsi 3all0OYHATHTE B MO-PAaHHUTE CTATHU
[3] u [4] ananuTHYHK OIICHKH Ha HAKOM BUIOBE ONpeEaeieHd HHTerpain. Te3u
pelIeHUs] ca HEOXOJAWMH CTBIKH B I[OCOKA Ha pa3KpUBAHETO Ha
MareMaTHyecKarta CTPYKTypa Ha JAWHAMHYHOTO YypaBHEHHE, YIPABIISABAIIO
CBOWMCTBaTa Ha CMAYUOHAPHUME CIUNTHYHN AaKPEIUOHHHU JHUCKOBE, YHHTO
arCUIHU JIMHUM HAa BCHYKH OPOMTH JIeKAaT BBPXY €IHA W China juHus [5].
Bwrpeku de pasmiexaaHarta TyK 3ajada MOXE Ja U3IVIeK]a, Ha TPHB MOTJIE,
KaTo eIHa YWUCTO MaTeMaTHuYecka TaKaBa, HMMa HSIKOM OTrPaHHYCHHS OT
(GU3HYECKO €CTECTBO BBPXY MPOMEHIUBHUTE, BIU3AIlM KATO apryMEHTH B
UHTErpaHanTe. B Ta3w cTatus HHE pellaBaMe aHAIWTHYHO CICAHUTE JBa
OIpEe/IeTICHU MHTETpaia, BKIIIOYBAIIA B TEXHUTE YUCIUTENN (KATO MHOXKUTEN)
noraputmuuHata ¢pyukius IN( 1 + ecosp). KonkperHo, Hue HamupaMe B sSBHA
(dhopma pereHusATa Ha UHTETPATUTE

Li(e,é) Ejﬁln(l + ecosp)](1 + ecosp) “*[1 + (e — é)cosp] ' dp, (i=0, ..., 3) u Kj(e,e) =
= (IZ:[rIn(l + ecosp)][1 + (e — é)cosp] ' dg, (=1, ...,5). Tyk HHe cMe HU3MOI3BAIH

ClieIHUTE 0003HAUCHHUS. (@ € a3UMYTATHUAT bI'bI. MHTerpupanero mo ¢ ot 0 10
27 03Ha4YaBa YCPEAHABSIHE BbPXY IUIaTa TPACKTOPHSI 32 BCSIKA €IHA YaCTHUIIA OT
nucka. Besika TakaBa yacTuIla ce CIycKa IO Chpaia KbM IIEHThPa Ha JKCKa,
JBIKEWKH ce 1o (KBa3W-) eNunTHYHH OopOuTH ¢ (okaaHu mapamerpu P. Ha
TE3M MapaMeTPH P € MO3BOJICHO Ja BapUPAT 3a Pa3IHIHHUTE SIUIITHIHA OPOUTH.
B Hamms momxom Ha u34MCHABaHe, Hue Tpetupame e(U) u é(Uu) KaTo
HE3aBUCUMH MPOMEHINBU. DHU3MYECKH HAIOKEHUTE OrPaHHYCHUs (KOUTO, IO
M3BECTHA CTEIEH, BOJAT JI0 OMPOCTABaHMs Ha 3amaunte) ca |e(u)| < 1, |é(u)] <1
u |e(u) — é(u)| < 1 3a BcuuKkM IOMyCTHMH 3HaveHus Ha U. Toect, Mexay Haid-
BBTPEIIHATA U Hal-BBHIHATA OPOUTA Ha nucka. CJe0BaTeHO, YCTAHOBEHUTE
B Ta3W CTAaTUS aHAJMTUYHU pemieHus 3a uaterpanure Li(eé), (i =0, ..., 3) u
Kj(e.é), j =1, ..., 5) ca, BeposTHO, He Haif-00IUTE TaKKBa Jaxke B obylacTTa Ha
peanHusi aHanu3. Bbhopeku TOBa, Te ca JOCTAThYHM 3a HAIATa el Ja Ce
OIPOCTH TUHAMHYHOTO YPaBHEHHE.
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