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Abstract

This paper is a part of the investigations, dealing with the mathematical structure
of the stationary elliptical accretion discs in the model of Lyubarskij et al. [1], i.e., discs for
which all the apse lines of the particle orbits are in line with each other. The main point of
the adopted approach is to find linear relations between the integrals, entering into the
dynamical equation for these objects. They will enable us to eliminate these complicate
(and, generally speaking, unknown analytically) functions of the eccentricity e(u) and its
derivative é(u) = de(w)/du of the individual orbits. Here u = In(p), where p is the focal
parameter of the corresponding accretion disc particle orbit. During the process of
realization of this program, we strike with the necessity to find analytical evaluations for
two kinds of integrals:

2 2rn
Li(e,é) = |fIn(1 + ecosp)](1 + ecosp) ~'[1 + (e — é)cosp] ~"do, (i = 0,..., 3), and Ki(e,é) = |[In(1 + ecosp)]x
0 0

x[1 +(e — &)cosp] ' dp, G = 1, ..., 5). In the present investigation we find recurrence relations,
allowing us to compute the integrals Lieé), (i = 1, 2, 3), under the condition that the
integrals L; i(e,é) and Ki(e,é) are already known. Conversely, computations of the integrals
Kjeé), =1, ..., 5), through the recurrence dependences do not require the knowledge of
the analytical solutions of the integrals Lie,é), (i = 0, ..., 3). In view of the fact that the
integrals Ly(e) (it does not depend on é(u)) and K;(e,é) serve as “starting--points” into the
corresponding recurrence relations, we have find analytical expressions for them. The
solution of the full set of analytical evaluations of Lieé), (i = 1, 2, 3), and K(eé),
G =2, ..., 5), will be given elsewhere [7].
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1. Introduction

The present paper continues a series of investigations, devoted to the
simplification of the dynamical equation of the elliptical accretion discs.
Especially, the considerations are constrained to a specific model, developed
by Lyubarskij at al. [1]. The essential property of this model is that the all
elliptical particle orbits are sharing a common longitude of periastron. The
other restriction, which we impose on the adopted elaboration, is that the
accretion flow is stationary. That is why, the dynamical equation, with
which we are dealing, governs the stationary space structure of the disc. We
remind that the particle orbits at different parts of the disc, may have
different eccentricities e(u), respectively. Here with the variable u we denote
the logarithm of the focal parameter p of the corresponding elliptical orbit:
u = In(p). Also we shall often use the notation é(u) = de(u)/du for the first
ordinary derivative of the eccentricity e(u) with respect to u. The way we
proceed, to reveal the mathematical structure of the above mentioned
equation, is to eliminate certain definite integrals over the azimuthal angle
@. They are functions of e(u), é(u) and the power n in the viscosity law
n=p2" (B is a constant, 7 is the viscosity and X' is the surface density of the
accretion disc). The procedure of reducing of the number of these integrals,
by means of establishing of linear relations between them, is described and
applied in earlier papers ([2], [3] and the references therein). Until now, the
question: if three of these functions Iz(e,é,n), Iy.(e,é,n) and Iy:(e,é,n) are
linearly independent or not, still remains open (for definitions of these three
integrals see [2] and [3]). The standard method to check which of these two
alternative cases is available, is to compute the corresponding Wronskian.
The procedure includes evaluation of some derivatives with respect to e(u)
or é(u) of the above mentioned integrals. In turn, this leads to appearing of
two new integrals, for which we also have to find analytical solutions. In the
course of realizing of this computational scheme, we, at first, must have
available analytical expressions of given auxiliary integrals. In the preceding
paper [4], we have given the solutions of such integrals, when their
integrands do not include logarithmic functions of e(u) or é(u). The present
investigation deals just with this complementary case. It will be seen from
the following exposition, that such integrals arise, when we obtain formulas,
containing into their denominators factors, vanishing for some integer
values of the power n. But from a physical point of view, we do not expect
that the integer numbers n have “special” meanings in the considered
accretion disc theory. And it is reasonable to check the “problem” formulas
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for their behaviour, when n approaches the “singular” value. It turns out,
that the corresponding nominators also tend to zero, “compensating” the
divergent (at the first glance) character of the analytical expression. As
usual, it is instructive to apply in this situation the L’Hospital’s rule for
resolving of indeterminacies of the type 0/0. In turn, similar computational
scheme implies the necessity of finding the partial derivatives with respect
to the power n. More specifically, for the considered by us integrals, we
shall compute derivatives like:

@) O[(1 + ecosp)']/on = n In(1 + ecosy),

according to the well-known rules from the differential calculus. In the
above formula we take into account that the eccentricity e(u) (or the
difference e(u) — é(u), which may stand in the place of e(u)) and the
azimuthal angle ¢ do not depend on n. Of course, the considered model of
elliptical accretion discs [1] keeps fixed the power n (i.e., the viscosity law
n = B 2" remains valid throughout the entire disc) for every concrete
accretion disc. The mathematical variability of » in the equality (1) should
be supposed physically as a change/transition from one accretion flow (with
a given fixed power n) to another accretion flow (with other, also fixed, but
a little different value of n).

2. Integrands, including as a factor logarithmic function

The available handbooks, which we had considered, in order to find
already computed analytical expressions for the integrals, representing an
interest for us, do not give a direct answer to the task. We do not strike only
with the incompleteness of the lists of the cited formulas, but also with the
need to obtain evaluations of the integrals, which are valid for special
choices (i.e., restrictions on the domains) of the parameter space,
characterizing them. Probably, the specialization of the considered by us
problem, leads to two possible situations:

(/) The integrals, for which we are seeking, are too “specialized”, in
view of the circumstance that the considered problem also treats too
“narrow” aspects of the physical/mathematical theory. Correspondingly,
such solutions of the integrals remain, as a rule, out of the attention of the
compilers of the reference books, containing mathematical formulas.

(if) In the other, generating difficulties case, the analytical expressions
are very complicated formulas. Then, if even these solutions are found, they
may not be included in many handbooks, for reasons of their extended form.
The later property is, in particular, stipulated by the aspiration of the
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calculators to resolve these integrals in the most general case of the domain
of variables.

Dealing with the problems of the types (i) and/or (ii), we have to
overcome these troubles by performing our own computations of the
considered integrals. Fortunately, we were able to find an analytical
evaluation of an integral, which may serve as an initial starting-point for our
further advance. In the reference handbook of Prudnikov et al. [4] is given
the following formula for the analytical solution of the integral (formula on
page 545; note that the integration is from 0 to m, not from 0 to 2x ):

2) i[ln(l —2acosp + a*)|(1 — 2bcosp + b?) "' dp =

|b| <1

2z |1 =0 (1 —ab* ') ; Jlal<1 |,
b > 1

T or

b < 1

2w |1 = inja - b7 ; Jla>1 b
b > 1

For further use of the above formula, we shall express the parameters
a and b by means of the eccentricity e(u) and its derivative é(u) in a way,
depending on the kind of the integral, which we intend to evaluate. At first
glance, the existence of four possible branches in the right-hand-side of the
relation (2), leads to the suspicion that the solutions, which are based on (2),
are lacking of uniqueness. We shall see later, that in our applications all the
four solutions are, in fact, identical. That is to say, the branching in our case
makes no sense. We also stress that the eccentricity e(u), its derivative é(u)
and, correspondingly, their difference e(u) — é(u) are real functions of u. In
turn, the parameters a and b, expressed in terms of e(u) and é(u), are also
real quantities. Taking into account that we resolve the task under
the conditions of satisfying the inequalities |e(u)] < 1, |é(u)] < 1 and
le(u) — é(u)| < 1, we could conclude that the integral into the left-hand-side
of the equality (2) is a real function on e(u) and é(u).Without any singular
behaviour in the pointed out domain of these variables.

Our main goal in the present paper is to compute analytically the
following two kinds of integrals:
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3) Li(e,é) Ez(ﬁln(l + ecosp)](1 + ecosp) "'[1 + (e — é)cosp] o dp ; i=0,...,3,

2n
4) Kj(e.é) = [[In(1 + ecosp)[1 + (e — é)cosp] Tdp; j=1,...,5.
0
The above integrals resemble to the integrals:

2m X
(3) Aie,e)=[1+(e—é)cosp] ' dp; i=1,...5,
0
2n .
(6) Jj(e,é) = fa+ ecosp) '[1+ (e—é)cospl Tdp; j=1,...,4,
0

2n R
() Hyed)=](1 +ecosp) '[1+(e—é)cosp] 'dp; j=1,....4,
0

in the sense, that in the denominators of the integrands encounter as factors
certain powers of the quantities (1 + ecosp) or [1 + (e — é)cosgp]. But for the
first system of integrals (3) & (4), the nominators are equal to the
logarithmic function /n(1 + ecosg), instead to unity. The later circumstance
essentially complicates the analytical evaluations of Li(e,é), (i = O, ..., 3)
and Kj(e,é), (j = 1, ..., 5), in comparison with the corresponding
computations of the integrals Ai(e,é), i=1, ..., 5), Jj(e.€) and Hj(e,é), (j =
=1, ..., 4), which were done in an earlier paper [4]. Of course, the selection
of the powers of the factors (1 + ecosp) and [1 + (e — é)cosg] into the
definitions (3) and (4), is predetermined by the necessity of the applications
of the analytical solutions for our own future developments. That is to say,
like the situation with Aj(e,é), Jj(e,é) and Hj(e,é), the integrals Li(e,é) and
Kj(e.é), in principle, may be evaluated analytically for arbitrary non-
negative integers i or j, by the means, which we shall use in the present
paper. But we shall limit us further only to the necessary minimum of
computations. These will be based on the application of the relation (2), and
in connection with this, we make the following important remark. We do
not trace back the derivation of the formula (2) and accept to trust the
adduced solution of the Prudnikov et al. [5]. To preserve us from any
possible incorrectness of this formula, we further check the derived
analytical expressions also by means of numerical computations for a dense
enough lattice of values of e(u) and é(u). Both in the open interval (—1.0;
+ 1.0), taking also into account that |e(u) — é(u)| < 1. Speaking in advance,
we note that there is not doubt in the validity of the relation (2), because the
discrepancies between the analytical and numerical evaluations (based on
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the formula (2)) are of the order 10 ~ ' — 10 ~ " — the accuracy of the
numerical computations itself.

2.1. Recurrence relations for the integrals of the type
2n

Li(e,é) = | [In(1 + ecosp)|(1 + ecosp) ™ '[1 + (e — é)cosp] ™' dyp
0

We shall establish in this chapter a number of relations between the
integrals given by the definitions (3) and (4), which will enable us to
evaluate in an explicit analytical form these integrals as functions of the
eccentricity e(u) and its derivative é(u) = de(u)/du. Actually, these formulas
will be recurrence relations for the first kind of integrals, namely, Li(e,é),
(i=0,, 3). They will include also integrals of the type Kj(e,é), (j=1, ..., 5),
which, at the present stage of the computations, are still unknown functions
of e(u) and é(u). Later we shall find another recurrence relations about
Kj(e.é), (j =1, ..., 5), that refer only to this kind of integrals. As a final
result, this will give us an opportunity to calculate in an explicit form the
integrals Kj(e,é), (j = 1, ..., 5). Returning back to the recurrence relations
for Li(e,é), (i=0, ..., 3), derived below in the present chapter, we finally are
in a position to write explicitly the analytical solutions for the integrals
Li(e,é), (i=0, ..., 3).

We begin with the remark that Lo(e) is a function only of the
eccentricity e(u), but not of its derivative é(u):

®) Ly(e) Ezﬁln(l + ecosp)](1 + ecosp) ' dop.

To the end of the present chapter, we shall suppose that e(u) # 0 and
é(u) # 0. The evaluations of Lj(e,é), La(e,é) and La(e,é) for these particular
values of their arguments are more appropriate to be given, when the full
expressions for them are already available. According to the definitions (3)
and (4), we have:

O] Ls(e,é) Ez(f)fln(l + ecosp)](1 + ecosp) " '[1 + (e — é)cosp] > dp =

=i[;{[[l + (e — é)cosp] — (e — é)cosp [In(1 + ecosp)](1 + ecosp) ™~ 'x

X[1+ (e — é)cosp] > do :z{fln(l + ecosp)|(1 + ecosp) " '[1 + (e — é)cosp] * dp —
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—[(e—- é)/e]zfof[t(l + ecosp) — 11[ In(1 + ecosp)](1 + ecosp) " '[1 + (e — é)cosp] > dp =
=Ly(e,e) —[(e— e’)/e]zg[[ In(1 + ecosp)|[1 + (e — é)cosp] > dop +

+[(e— é)/e]zzf)fln(l + ecosp)](1 + ecosp) " '[1 + (e — é)cosp] > dp =
=Ly(e,6) — [(e — é)/e]Ks(e,é) + [(e — é)/e]Ls(e,é).

Therefore, transferring the last term [(e — é)/e]Ls(e,€) into the right-
hand-side, we obtain that:

(10) {1 -[(e—é)el}Ls(e,é) = (¢/e)Ls(e,é) = La(e,é) — [(e — é)/e]Ks(e.é),
or, multiplying by e/é:
(11)  Ls(e,é) = (e/lé)Ly(e,e) — [(e — é)/e]Ks(e,é).
By the exactly analogous way, we may derive recurrence relations
for the integrals Ly(e,é) and Lj(e,é). We simply write here the final results:

(12)  Lsy(eeé) Ezgfln(l + ecosp)](1 + ecosp) " '[1 + (e — é)cosp] > dp =
= (elé)Ly(e,é) — [(e — 6)/e]Ky(e.é),

(13)  Ly(e.é) Eszln(l + ecosp))(1 + ecosp) '[1 + (e — é)cosp] ' dp =
= (elé)Ly(e,é) — [(e — é)/¢]Ky(e,€).

We call to mind, that the above formulas are deduced under the
assumptions that e(u) # 0 and é(u) # 0. Obviously, the equations (11), (12)
and (13) are useful if Kj(e,e), Ky(e,é) and Kj(e,é) are already known
functions of e(u) and é(u).

2.2. Analytical computation of the integral
2z
Lo(e) = J- [In(1 + ecosp)|(1 + ecosqo)_1 do
0
For our present purposes we shall transform the left-hand-side of the

formula (2) (given by Prudnikov et al. [5]) in the following way:

T

(14)  [[In(1 = 2acosp + a*)](1 — 2bcosp + b*) ™' dp =

0
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= f){ln{(l +a) {1 - [2a/(1 + a)]cosp}}3(1 + b?) {1 —[2b/(1 + b*)]cosp} ' dp =
— (4B (1 + az)];f{l —[2b/(1 + B)]cosp} ! dp +

+(1+b% IE {in{1 —[2a/(1 + a*)]cosp}} {1 — [2b/(1 + b)]cosp} ' dp.

We remind here that, unlike the previous integrals, now the
integration is from 0 to m, not from 0 to 2x | Let us substitute:
(15)  —[2a/(1 + d*)] =—[2b/(1 + b*)] = e(u).

Therefore, we are able to write, in agreement with the relation (2),
that:

(16) I[ln(l + ecosp)](1 + ecosp) ' dp=—a[In(1 +a»)](1-€*) "+

|b] <1 W
2z (1+ b1 =0 'In(1 —ab™ "y ; 1 Jlal<t
|b] > 1
+ = or
[b] <1
2 (1+ )1 =0 'inja—b""|; A el >1 F .
1b]>1 |

We shall now check the validity of the “obvious” condition a = b.
We have that:

(17)  -Ra/(l+d)]=-[2b/(1+b%)] => a+ab*=b+d’b, or
(18) ab*—a’b—b+a=0.
We write the above equality as a quadratic equation with respect to b:
(19)  ab*+(-1-a)b+a=0.
Correspondingly, the solutions of this equation are:
20)  bp=[a’+ 1+ (1+24 +a" - 4a")"*)(2a) = {@’ + 1 £ [(1 - &*)’]"*}/(2a) =
=[d*+ 1+ -d)]Qa).

The two solutions are, therefore:
21) b=@+1-1+d)/(a)=a, and
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(22)  by=(@*+1+1-d"/(2a)=1/a.

The existence of the above equalities means that we have to consider
two cases: by = a and by = 1/a. However, let us examine at first, how the
restriction |e(u)] < 1 imposes itself other restrictions over the variables a and
b. We have that, according to the substitution (15):

(23) -2a=e+ed,
which implies a quadratic equation for a:
(24)  ed*+2a+e=0.

Solving with respect to a this quadratic equation, we obtain:
(25)  ap=[-2x@-4¢)"Q2e)=[-1£(1-e)"?e.

We have to investigate the following four situations:

(i) solution ay =[- 1 + (1 — &))" }/e; || = |- 1 + (A — €)"?|/|e| < 1. This
implies that:
26)  1+(1-e)"? <.

Because |¢| < 1, we can write 0 < 1 —¢* < 1, or (1 — (32)”2 <l1.
Further we have:
—1+(1-¢%"*<0, which means that |- 1 + (1 — &))" =1-(1-¢&)"?.
Consequently, from the inequality (26) follows that: 0 <1 — (1 —e*)"? </e|.
Therefore:
0<1-le|<(1-e»)"? Raising into square will give:
Q7)) 1+ -2e|<l—¢& => 2e*<2e| => <[] =>|¢|<].

The above chain of inequalities means that we do not arrive at a
contradiction. That is to say, this case (i) is admissible.

(ii) solution a; = [- 1 + (1 — &))" *)/e; |ay| = |- 1 + (1 — €%)" ?|/|e| >1.This
implies that:
28) 1+ (1-e)" >,

Because |e| < 1, we can write e < 1, or 0 <1 —e* < 1, and (1 — &)"? < 1.
Further we have: — 1 + (1 — 62)1/2 < 0, which means that |- 1 + (1 — &%)"?| =
=1 — (1 — )" % We shall substitute the later equality into the inequality
(28). Unlike the previous case (i), now the sign of the inequality (28) is
changed in comparison with (26). This will introduce a radical change in our
conclusions. According to (28), we write [0 < 1 —(1—¢»)"?] N[1—(1 -
— )" 2> ef],or [0<1—le]] N [1—le| > (1 —¢%"?] . Raising into square
will give:

(29) 1+e&*=2e>1-¢ => 2e*>2e] => &>e] = |e|> 1.
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We derive a contradiction, because, by hypothesis, |e| < 1. That is to
say, the considered case (i7) is not permitted!
(iii) solution a, = [~ 1 — (1 — &))" *)/e; |az] = |- 1 — (1 - €*)" *|/|e| < 1.This
implies that:
(B0) 1-(1-N"=1+(1-e)"? <.
This relation may be immediately rewritten as:
Bl)  0<l-le<-(1-)"?<0.
It turns out that must be fulfilled simultaneously two inequalities
about the difference 1 —|e|:
(33) (1-1le/>0)N (1—le|<0).
i.e., we obtain a contradiction. Therefore, the considered case (iii) is not
permitted!
(iv) solution ay = [ 1 — (1 — &))" ?*V/e; |az) = |- 1 — (1 — €%)" *|/|e| >1.This
implies that:
G4 Fl-(-)=1+1-e)">el,
(35 1-leg>-(1-&)"* = 1-]ef>0>-(1-&)"~
Correspondingly, in this case (iv) we do not strike with a
contradiction.
To summarize the conclusions from the considered above four
possible opportunities, we shortly say that, under the restriction |e(u)| < 1:
1) The solution of the quadratic equation (24) a; = [- 1 + (1 — M /e
1s in agreement with this restriction only if |a| < 1;
2) The solution of the quadratic equation (24) ax =[-1— (1 — MV Ye is
in agreement with this restriction only if |a| > 1.
The situation is illustrated graphically in Figure 1 (a) and (b).
Because of the symmetry, given by the equalities (15), the same
conclusions are valid for the coefficient b, where we have to consider the
quadratic equation
(36) eb*+2b+e=0,
instead of the equation (24).
3) The solution of the quadratic equation (36) b; = [- 1 + (1 — ez)l/ Ve
is in agreement with the restriction |e(u)| < 1 only if |b| < 1;
4) The solution of the quadratic equation (36) b, =[— 1 — (1 — &))" *J/e is
in agreement with the restriction |e(u)| < 1 only if |b| > 1.
We must not confuse the roots by and byy with the roots by and b, !
Having in mind the above preliminary remarks, we now return to the
investigation of the equation (19).
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Case I: b =a. Subcase 1: |b| =|a| <1.
According to the deductions 1) and 3), a; =b;=[-1+ (1 - ez)”z]/e.

Then, in view of the formula (16):

(37

'

i[ln(l + ecosp)](1 + ecosgu)’1 dop=—rn{ln[1 + (al)z]}(l - ez)’ vz
+2a[1 + (@)’ ][1 (@)1 [ 1 - (a))’].

al=Rootl
1 -

a) Case (i): la;| = |- 1+ (1 —¢e)"?|/|e| < 1.

aZz=Root2
200

100

-100

b) Case (iv): |as| = |- 1—(1—¢€°)"?|/|e| > 1.

Fig.1. Solutions of the quadratic equation (24) ea® + 2a + e = 0

We compute the following auxiliary expressions:
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(38)  1+(a)’'=1+/A)[1+1-e-2(1-¢€)"?]=2/M)[1-(1-e)"?]>0,

(39)  1—(a)=1-/AD[1+1-e-2(1-)" =/ -2+ +2(1-e)"?] =
_ (2/e2)[e2 1+ _e2)l/2][ 1+(1 _62)1/2][1 +(1 _e2)1/2]—1 -
_ 262(1 _62)1/2/{62[1 +(1- 62)1/2]} =2(1 —ez)”z/[l +(1 _62)1/2].
Consequently, we have:

(40)  0<l—(a))=21-"Y[1+1-)"<1.

1) (1 + ecosp)](1 + ecosp) ' dp = solution 1 =
0

=—7(1-¢&) " {2 -2(1 - )]} +

T 277,'(2/62)[1 _(1 _ 62)1/2][1 + (1 —62)1/2][2(1 _62)1/2]—1><

xIn{2(1 =4[+ (1 - Pi=—a(1 — ) " m{(1/eH[2 - 2(1 — HV ]} +
+27(1 =) " m{2(1 - A1+ (1 =" =1 — &) Infde*(1 — &))x
<2[1-(1-"1+1-H"1+ 1)} 1} =

=a(l - "2In2e*(1 - {1 -1+ N1+ (1 -1}

Finally, we are able to write for this case:

T

42) (1 + ecosp)](1 + ecosp) ™" dp = solution 1 =
0

=x(1-¢) ’In{2(1 -1 +(1-€)"*] '} =
=—a(l-e)""In{[1 + (1 -eH"H[2(1 —eH] '}

Case I: b = a. Subcase 2: |b| = |a| > 1.
According to the deductions 2) and 4), a, = b, =[-1—-(1 — ez)l/ 2]/e.
Then, in view of the formula (16):

T

(43) g[ln(l + ecosp)](1 + ecosp) ' dp=—n(1 — )" In[1 + (ar)*] +

+ 271 + (a)"|1 = (@)’ 'Inja, — V/as| .

We compute the following auxiliary expressions:
44)  1+@) =1+1/A[1+1-+2(1-NH" =1+ -eH",
(45)  1-(@)i’=1-/AD[1+1-+2(1-H)" 1=/ -2+ —2(1 —eH)"?] =

— (2/62)[62 —1-Q —62)1/2][1 (1 —62)1/2][1 (1 _62)1/2]71 —

- 2(1 _ 62)1/2[1 _ (l _ 62)1/2]—1 < 0’
(46)  lax— Vas| = |[(a2)* = 1Vas| = [(a2)* = /|aa| = [(a2)’ — 1V/|aa| =

=2e|(1 - ez)”z[l +(1- 62)1/2]71[1 —( _62)1/2]71 —

=2le|(1 - (1-1+e) '=2(1-¢%)"e|.
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The derivation of the equality (46) takes into account the last
inequality in (45), according to which (a2)* —1 > 0, implying that |(a2)* — 1| =
= (a,)* — 1. Therefore, in the present subcase we can write:

47) [In(1 + ecosp)](1 + ecosp) ' dp = solution2 =

e T

=— (1 -¢&) {1+ (1 - )"} +a(l - ) " n[4(1 - &)/e’] =

=—a(1-¢&) {21 + (1 - )[4 (1 - )]} =

=—a(1-¢&) {1+ (1-¢)"?[2(1 - )] '} = solution 1.

We see that the both subcases give the same analytical solutions for
the integral that we are resolving!

Case II: b = 1/a. Subcase 3: |b| =|1/a| <1.

According to the deductions 2) and 3), a =a> =[- 1 — (1 — &))" /e
andb=b=[-1+(1- ez)]/z]/e. Then, applying formula (16):

T

(48) I[In(1 + ecosp)](1 + ecosp) ™' dop = solution 3=—n(1 — &)~ V211 + ()] +
0

+22{1 + (b1 — ()| 'Injay — by .

Note that b; = (1/e)[- 1 + (1 = A" I[1+ (1 - A1+ (1 -V ' =
=(le)(1-—D[1+(1-eD)" T '=e[-1-(1 -] "= Ua), ic., b =
= 1/(ay). This result once again affirms the consistency of our calculations.
We shall use the already computed expressions (38) and (39) for 1 + (a))
and 1— ()%, respectively, because

1+ (b))> =1+ (a1)*and |1 — (b))’ =1 —(a1)’l.
Moreover:
(49) lay — bi| = |az — 1/(ay)|.

After these remarks, we have:

T

(50) [[In(1 + ecosp)|(1 + ecosp) ™' dp = solution 3 =
0

=—7(1-e) " "2m{Q/eH[1 + (1 -] +27{2[1 — (1 - D1 + (1 - D)V %
x[26*(1 — )21 ' In[2(1 — ) ¥e| "1 =—a(1 — D)V Hn{2/)[1 + (1 — )] +
+a(l—e?) " [(1 =1+ D/e*)in[4(1 — e)/e*] =

=—a(l-e)""2In{[1 + (1 - H"[2(1 — )] '} = solution 1.

We again have a coincidence with the earlier evaluations of the
considered integral.

Let us to proceed to the last remaining case in formula (16).
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Case II: b = 1/a. Subcase 4: |b| =1/|a| > 1.

According to the deductions 1) and 4), we have a = a; = (1/e)[- 1 +
+(1 - e2)”2] and b= b, = (1/e)[- 1 — (1 — &))" ?]. Note that by = (1/e)[- 1 —
~( e = (=) = (1 =)= (= e)(1 -1+ A1 (1 -

A P =e[-1+ 1 -e)"H "= l/ay, ie., by = 1/a,. This result once
again affirms the consistency of our calculations.

51) I[In(1 + ecosp)](1 + ecosp) ™' dop = solution 4=—n(1 — &)~ V21 + ()] +
0
+2a[ 1 +( b2 )|1 = (bo)]~'in|1 — ay/by| .

Taking into account that 1 + (5,)* = 1 + (a2)* (see equality (44)) and
11— ()’ =1 = (@) =2(1 — )" *[1 = (1 — )"*] " (see equality (45)), and
also (1 — ay/by) =[1 = (a1)*]=2(1 —H)"’[1 + (1 — )" ?] ', we find that in
this subcase:

(52) [[In(1 + ecosp)|(1 + ecosp) ™' dp = solution 4 =
0

=—n(1-¢&) {2/ - (1 - e)‘”]}+2n{2[1 +(1-)"2[1 - (1 - &))" ?)x
><[262(1762)1/2]—11,1{2(1 6)1/2[1 +(1 )1/2] }

=—a(1 - {1 - (1-e)"*]} +

A A -1+ e2)/e2]1n{4(1 —N+(1-eH"] 2 =

=—a(l-¢) n{2[1 - (1-&)"[1+ (1 - ?[1+ (1 -&)"?|[4e’(1 - )] '}=
=—a(l-e) """ {1 -1+ A1+ (1 -1 -€H)] '} =

=—a(l—e) """ {1+ (1 -e)"?[2(1 — )] "} = solution 1.

+
A

The final conclusion is that for all cases/subcases we obtain identical
results. It is also easily checked, that the extension of the interval of
integration over the azimuthal angle ¢ from [0, 7] to [0, 27], simply leads to
a multiplying of the results by a factor of two. Therefore:

(53) Ly(e) Eiﬁln(l + ecosp)](1 + ecosp) ' dp =
=2x(1 - {1+ (1 - 201 - )] 1.

It must be emphasized that the above derivations are performed
under the condition e(u) # 0. Bur the direct computation for Ly(0) gives a
zero value, because for this case /n(1 + ecosp) = 0. The same evaluation
follows also from the formula (53), though it was established under non-
zero values of the eccentricity e(u). Consequently, we are able to apply the
evaluation (53) for Ly(e) for arbitrary values of e(u) belonging to the open
interval (— 1.0; + 1.0).
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2. 3. Analytical computation of the integral

Ki(e,é) = ,[ [In(1 + ecosp)][1 + (e — é)cosp]~ ! do

First of all, we note that the integral Ky(e), which does not depend
on the derivative é(u) = de(u)/du, is already calculated in [6]. According to
formula 865.44 in this handbook of formulas, we have:

(54)  Kyle) Ez(f);n(l + ecosp) dop =2 In{[1 + (1 — &))" })/2}.

Our main purpose in the present chapter is to find analytical

evaluations for the integrals Kj(e,é), (i =1, ..., 5), given by the definition
(4). For this reason, we rewrite formula (2) into the following, more suitable

form (see also the relation (14)):

(55)  [[In(1 = 2acosp + a*)](1 — 2bcosp + b*) "' dp =

0

=1+ (1 + az)]tf){l —[2b/(1 + bY)]cosp} " do +
+(1+b%" ‘E{znm —[2a/(1 + a*)]cosp}} {1 — [2b/(1 + b*)|cosp} " dp =
=1+ bz)* l[ln(l + az)]i[l +(e— e')cosgo]’1 do +

+(1+bH)" 1I[ln(l + ecosp)|[1 + (e — é)cosp] ' dop.

We have used above the two substitutions:
(56)  —2a/(1 +a) = e(u), and
(57)  —2b/(1 + b = e(u) — é(u).
We use also the result/formula 858.524 from Dwight [6]:

(58) :I[l +(e—é)cosp] ' dp=n[l —(e—¢)’] "%

Therefore:

2

(59)  [In(1 = 2acose + a»)](1 — 2bcosp + b*) " dop =

Sy

=—all —(e—¢)"1 "?In(1 +a>) +
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b <1
2 (1+ b1 =0 'In(1 —ab™ "y ; 1 , lal<1
|b|> 1
+ = or
[b] <1
2r(1+ )1 =0 'infa—-b*"; - , la]>1
LIbI>1

The solution of the equation (56) gives two roots:
60)  a =[-1+(1-¢)"*e,
61)  a=[-1-(1-e)"?le.
The solution of the equation (57) also gives two roots:
(62)  bi={-1+[l-(e—¢y]"*}(e—¢),
(63)  by={-1-[1—-(e—¢)’]"*M(e—-¢).
The restriction |e(u)| < 1 implies that |a;| < 1 and |a;| > 1. From the
other hand, the restriction |e(u) — é(u)| < 1 implies that |b;| < 1 and |b,| > 1.
Let us find relations between the systems of roots {a;, ax} and {b;, b>},
respectively. From substitutions (56) and (57) follows that:
(64)  —2b/(1 + b +2a/(1 + a*) =— é(u).
Multiplication of this equality by (1 + a*)(1 + b%) leads to a new
form of this relation:
(65) —2b(1+a)+2a(l +b)=—é(l +a’)(1+b) <=>
<=> —2b-2ba’+2a+2ab’+é+éb’ +éa’ + éa’h’ = 0.
If we consider the variable b as an unknown quantity, the later
equality may be regarded as a quadratic equation for b:
(66)  (éd*+2a+é)p* + (-2 —2aD)b+ (éd” +2a+¢é)= 0.
Taking into account the equality (56), we compute that:
(67) éd*+2a+é=2a+é(l+d®)=2a+é(-2ale)=2a(l — éle) = (2ale)(e - é).
Moreover:
(68) —2-2a*=-2(1+d%=4ale.
Therefore, the quadratic equation (66) becomes (after dividing by
2ale):
(69) (e—é)b*+2b+(e—é)=0.
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The two roots of this equation are:
(70)  bi={-1+[1-(e—¢y']"*}e-¢)",
(7)) bhy={-1-[1-(e—¢y]"’}(e-&)".

In the opposite case, we also may consider the equation (65) as a
quadratic equation for the unknown variable a. Then we obtain the
following quadratic equation:

(72)  (eb*=2b+¢é)a* + (2 +2bYa + (éb* —2b + €)= 0.
We compute that (in view of the equality (57)):
(73)  éb*—2b+é=—2b+é(1 +b)=—2b+¢[-2b/(e —¢)] =
— [ 2b/(e — é)](é + e — &) = — 2bel(e — é).
Moreover:
(74)  2+26*=2(1 + b*) =—4bl(e - é).
Then, the quadratic equation (72) becomes (after dividing by —2b/(e —
—)):
(75)  ed*+2a+e=0.
The two roots of this equation are:
(76)  ar=[-1+(1-€)"?Ye,
77 a=[-1-1-e)"le.

We stress that the equations (24) and (75) are identical, and,
correspondingly, their roots (25) and {(76), (77)} coincide. But the situation
is different when we compare the quadratic equations (36) and (69).
Because, generally speaking, é(u) # 0, we have not coincidence between
these relations, and, consequently, their solutions are not identical. For this
reason, the notations {b;, b2} in the present chapter must not be confused
with the corresponding notations for the roots in the preceding chapter!
With this remark, we continue our investigation of the (possible) relations
between the two systems of roots {a;, ax} and {b;, b,}. In general, the
solutions of the equations (69) and (75) imply that we have four self-
consistent representations of the analytical expression for the integral

2n

Ki(e,é) = ({[Zn(l + ecosp)|[1 + (e — é)cosp] ' dp. Namely: {ay, b\}, {ay, b}, {as, b} and

{az, by}. We shall prove now that all these four solutions for K;j(e,é) are
equivalent! In view of this purpose, we consider the following four cases:
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CaseLa;=[-1+(1-e)"e,by={-1+[1-(e—é)"]"*}e-¢)"".
For this case || < 1 and |b;| < 1. We have already computed that 1 +
+ (a1)2 = (2/62)[1 —(1- ez)l/ 2] > 0 (see equality (38)). Further we calculate
that:
(78) 1+ =1+{1+1-(e—¢)-2[1—(e—¢&)]"*}(e—¢) *=
=2{1—[1-(e—¢y']"*}(e—¢) %
The next evaluation is:
(79 =G |=1-B)’=1-{l+1-(e—é)]-2[1—(e—¢)']"*}(e—¢) *=
={le—¢f—2+(e—e&y+2[l—(e- &)1’} (e—¢) =
=2{(e—¢y +[1-(e—¢y]"* —1}(e-&) >
Further we have:
80) l-ab=1-[ele-&)] '[-1+(1-e)"~1+[1-(e—e)]"% =
=[e(e—&)] Hele—é)— {1 -[1-(e—&)]"* = (1-&)"* +
(=)= (e o]}
Having available the above preliminary evaluations, we can write (in
accordance to the formula (59)):

@B1) (12)Ky(e,e) Ei[ln(l + ecos)|[1 + (e — é)cosp] ' dp = solution a;b; =

=—7[l —(e—¢)’] {2/ — (1 — )" ?]} — 2a[2/(e — &)*]x

{1 —[1—(e— &)1} (e~ &)’ 21{1 = [1 - (e— é)’]"* — (e - )} 'x
xInf{e(e—&)— 1+ (1-&)"?+[1-(e—&))]"? = (1-€)"’[1 - (e—¢)]"?}x
x[e(e-e)] '} =

=—a[l—(e— ¢y’ 2n{2/N1 - (1- )]} —a{l - [1- (e - &)]]"?}x
{l—[1—(e—¢)]"*—(e—¢é)’} '"m{{e(E+é*—2e6)+1+1-&*+1-—
—(+é*—2ee)+ (1 - )1 —e*—é* +2e6)—2(e* — eé) + 2(* — eé)(1 — %) +
+2(e* —ee)[1 —(e—e))]" = 2(e* —ee)(1 — D) [1 = (e— )] 2 —2(1 — )2 -
—2[1 - (eié)2)]1/2 +2(1— 82)1/2[1 —(e— é)2]1/2 +2(1 7e2)1/2[1 _ (eié)z]l/z _
~2[1 7(676-)2]1/2 +2€2[1 7(eie-)2]1/272(1 7e2)1/27

- 2(1-&)"(- - +2eé)[e(e—e)] '}

In the above derivation we have taken into account that the transition
of the integration over the azimuthal angle ¢ from the interval [0, 7] to the
interval [0, 27] gives exactly doubling of the result. That is to say:

82) Ky(ee) Ezﬁln(l + ecosp)|[1 + (e — é)cosp] ' dp =

= 2(}:[ln(1 + ecosp)|[1 + (e — é)cosp] " dop.
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(83)

We also note that we shall use further the following equality:
[1—(e—&/1"*{[1-(e—&/]"? =1} =1—-[1 - (e—¢)’]"* —(e—¢),

in order to transform the denominator of the second term in the relation
(81). In turn, we are able to perform a cancellation with the multiplier
—{1-[1 — (e - &)1 1} in the nominator. Combining the two terms into
one, we obtain:

(84

solution a;b; = n[1 — (e — é)°] "V *In{e’ {4 — 6% + 2¢* + 6ee — 4e’¢ — 26 + 276 +
+(—4+ 4" —6ee+26) (1 —e))'? + (—4+4e” —2ee)[1 —(e—¢))]"* +
+(4-2¢" +2ee)(1 - &)1~ (e~ &))" }2[1 - (1 - &) Y)e’(e - &)’} '} =
=7a[l —(e—¢é)*] 2In{{2 -3 + &* + 3eé — 2e’¢ — &* + % +
+(=2+2—3ee+ )1 - P+ (=242 —ed)[1 — (e—é))]"* +
+2-e+ee)(1-e) " [1—(e— &))" H[1-(1-&) " e—¢)} '}

It is interesting to check what will be the behaviour of the above

solution under the transition é(u) — 0. We compute that:

(85)

(86)

@87

(8%)

(89)

lim solution aib; = (1 — &%)~ *n{[2 = 3&* + &* + (- 2 + 2e%)(1 — )V +
é(u)—0

+(72+262)(1 762)1/2+27627262+64]{62[1 7(1 762)1/2]}71} —
=a(l-e) "2In2[2 -3+ ' —2(1 - )1 — {1 - (1 - D)} =
=a(1-e?) "’In2(1 - )2 - &> —2(1 — )" [1 - (1 - D]} 1.

We see that:

[1-(1— 62)1/2][1 +(1 762)1/2] -1-q 762) =

Consequently:

[2 _ 62 _ 2(1 _ 82)”2] {82[1 _ (1 _ 62)1/2} -1 _

— [2 _ eZ _ 2(1 _ 62)1/2][1 + (1 _ 62)1/2]— 1[1 _ (l _ 62)1/2]—2 _

— [2 —62—2(1 —62)1/2][1 + (1 _ 62)1/2]—1[1 _2(1 —62)1/2 +1 _62]—1 _
=1[1+(1-e)".

Substitution of (87) into (85) gives (see equality (42)):

lim solution a;b; = n(1 — &)~ " *In{2(1 — &*)/[1 + (1 — &))" *]} = solution 1.
é(u) —0

Consequently:

lim (1/2)K(e,é) = (1/2)Ly(e),
é(u) — 0

as we expected to be, in order to have an agreement between the definitions
(3) and (4).

Casell: a;=[-1+(1-€)" /e, by={-1-[1-(e—é)*]"}e-¢)" .
For this case |a;| < 1 and |b,| > 1. We evaluate that:
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(90) 1+ =1+{1+1—(e— e)+2[1—(e ey’ (e —é) 2
=2{1+[1-(e-¢)1"*}(e-0)"

OO I (G| = B~ 1= {1+ 1 (e 7+ 21 (e~ P11 (e~ ) =
=2{1—(e=¢)’ +[1-(e=&1" He—¢) *=2M{[1—(e—¢y1 ) +
H=(e= e/ He—-¢) *=21~ (=1 {1+ [1-(e~¢1Ye—o)

Further we compute:

(92)  1—(a/b)=1 [~ 1+(1=&)"’)e—é)fef~1-[1-(e-¢)]"*}} ' =
=fe+e[l—(e—é)]" —e+e(l—e)'?+e—e(1 €)' ?x
fe{l +[1—(e—e)]"}} ' =
=f{e(1-&)"?+e[l —(e— &1 +eé—é(1—e) *Hell +[1—-(e—¢)]"?} .
93)  (112)K(e.é) = solution a;b, = —n[1 — (e — é)*] " *n{(2/eM)[1 — (1 — &))" 2]} +
+27(e - €)*{1 +[1—(e—e')zl”z}{Z(e—é)z[l—(e &1 {1+ [1—(e—¢)]" %) %
xIn{{e(1—e*)"* + e[l —(e—€)]"* +¢ - el — e)”}{ - (e )]”2}} =
=7a[l —(e—¢)’] In{e*{&* — &' + & — X (&’ + &* —2eé) + &%+ &8 — e+
+26%(1 - D)1= (e— &)1V + 2e6(1 — )" = 2eé(1 — %) + 2eé[1 — (e — é)*]"* -
—2eé(1 — 62)1/2[1 _ (e—e')z]m _ 2é2(1 _62)1/2}{262[1 (- e2)1/2]><
{1+[1-(e=eéy]"313 1} =
=7a[l —(e—¢&)*] Vn{{e* — &' — e + 2% + &* — &2¢* + (eé — ) (1 — ) +
+ed[1—(e—¢)]"? + (& —ee)(1 - &) [1 - (e—¢)]"? H[1 - (1 - )]
<{1+[1-(e—¢y1"1% %
In order to simplify the argument of the logarithm, we evaluate its
two multipliers:

94  {[1-(1-)" 1+ [1-(e—&)]"*} = {1—[1-(e—¢)]"*}x
“{[1-(1=e)"’1{1 +[1—(e— )] {1 +[1 - (e — )]} x
<{1-[1-(e—¢)]"*}} ' =
={1-[1—-(e-¢ 1" Ml -1 =) H{ 1 +[1-(e—&]"}[1 -1+ (e—¢f']} ' =
={1-[1—(e-&1" He-&[1-(1-) 1+ [1-(e—¢)]"*}} ",

(95)  {1—[l—(e—é)]"* {e* —e' —ec+2e¢ +&* —%* + (e — D) (1 — )2 +
+ee[l —(e—e)]"2+ (€ —ee)(1 —e)"?[1 —(e—€)"]"?} =(e— &)’ (1 —&* + eé) —
—(e—&(1-e+ed)(1-D)"?—(e—ey (1 -A[1 - (e—e)]"*+
+(e—e)(1-e)"[1— (e =(e—&{(1 - +ee) 1 - (1-&)"?] +
+(1 7@2)1/2[1 7(676.)2]1/2[1 —( 762)1/2]} _
=(e—¢y[1-(1 - {1 —e*+ec+ (1-eD) 1 —(e—e)]"3.

Substitution of the above results (94) and (95) into (93) gives:

96)  (1/2)K(e,e) = solution a;b, = {1 — (e — €)*] " *In{( e — &)’[1 — (1 — &*)"?*]x
x{l—&+eé+(1-e)"[1-(e—e)]"*}{(e—¢)[1 - (1 -&)"?]x
<{1+[1-(e—¢y]"?} 1} =
=7a[l —(e—¢é)*] 2In{{1 —&* + eé +
+(1=)"[1=(e- )] {1+ [1-(e— )"} ).

It is easy to see that the transition é(u) — 0 gives the expected result:

(97)  lim solutionazb, = lim[z[1 — (e — é)*] " *In{{1 — &* + eé +
é(u) — 0 é(u) — 0
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(1= = (e—éP] P +[1- (e~ ¢y} 1=

=a(1-¢)""2In{2(1 - A1 + (1 -eH)" 1 = (1/2)Ly(e).

There arises the natural question: whether the coincidence of the
solution a;b; and the solution a;b; happens only in the limit é(u) — 0, or it
is due to the equivalence of these solutions in general ? We shall show that
the later situation is true. For this purpose, it is enough to check the equality
of the arguments of the logarithmic functions. In fact, this means to verify
that:

98)  {1+[1—(e—e&) 1" {2-3e*+ &' +3eé—2e%c—* + %" +

+(=2+2—3ee+ (1 -2+ (=242 —ed)[1 — (e—é))]"* +

+@2-e+ee)1-e)"[1-(e—eP)]"? =

= -t -3+ (-t et +2e6— 3% — &F + 3%t —ed’)(1 - ) +

+ (- +et+2ee—2e% -+ M1 —(e—¢)]"?—2eé +3e’¢ + e’ +6* +

4 (ez _Deé + éz)(l _ 82)1/2[1 “(e— e-)z]l/z’

99) [1-(1-)"e-el{l—e*+ee+ (1 -1 —(e—e)]" =¢*— e —2eé +

+3e%+ " — 3%+ (—&f + et + 206 — 3e’e — ¢* + 3% — ed’)(1 — )P +

+ (- +et+2ee—2e% -+ M1 —(e—¢)]"* +

(e —2ee+ N1 —eH) 1 —(e—e)]"%

The right-hand-sides of the above two equalities (98) and (99) are
equal, which, in turn, after all, implies the equivalence of the solution a;b;
(given by formula (84)) and solution a;b, (given by formula (96)).

CaseIIL: a;=[-1-(1-€)"?|le, b;={~1+[1 - (e—&)"]"}(e-¢) "

For this case |a|>1 and |b| < 1. We have already computed that 1 +
+ (a)? = /D[] + (1 — &))" ?] (see equality (44)), which gives us the
opportunity to write the expression (59) into the form:

(100) (172)Ky(e,é) = Iin(1 + ecosp)|[1 + (e — é)cosp] ™" dp = solution azb; =
0

=—a[l —(e—¢éy] {2/ + (1 —&)"*]} —22{1 — [1 - (e — ¢))]"*]}x
*{1-[1-(e—¢)1"’1-(e— &)’} 'njay— by| =

=—a[l —(e—éy] {2/ + (1 -’} +x{l - [1 - (e—&)']"*]}x
{[1=(e—e)1"* {1 = [1-(e—&)"1"*} 'In(a,—b))* =

=7{l—(e—¢)’] In{(e/2)(ar— by)[1 + (1 -&)"?] 7'}

We take into account that:

(101) [1+(1- 62)1/2]71 =[1-(1 762)1/2]2[1 —(1- 62)1/2]71[1 (1 762)1/2]71X
x[1+ (1 762)1/2]71 _ [278272(1 762)1/2]672[1 —q 7e2)1/2]’1.

(102)  (aa—b)’={[-1-(1-&)"Ye—{~1+[1-(e-¢)]"*}(e—¢) '} =
={le—e)1-e)"?+e—c—ete[l —(e—e)]"* e He—¢) =
={(&+ " —2ee)(1 — &) + & + & — X (e® + &% — 2eé) + (— 2ee + 26M)(1 — &))" 2 +
+ (26" = 2e6)(1 — €)[1 — (e — €)"]"* = 2e¢[1 — (e —€)"]"*}e He—¢) *=
=2{e*—e'—ec+2e’¢+ & —** —é(e—¢)(1 — )P +
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te(e—e)1-e)"[1—(e—e)]"? —eé[l — (e —¢é)*]" e *(e—é) %
Having in mind the above intermediate calculations (101) and (102),
we are able to rewrite the expression (100) in the following way:
(103)  (1/2) Ky(e,é) = solution asb; = n[1 — (e — é)*] " *n{2e’[2 — &> — 2(1 — &%) *x
x{e*—et—ee+ 2%+ — e —e(e—é)1-eN)?+
+e(e—o)(1 -1 —(e—e)]"*— e[l —(e—€)*]" %
x{2e’[1 - (1-€) "’ (e ey} '} =
=7a[l —(e—¢&)*] Vin{{2 - 3&* + &* + 3e6 — 2%¢ — &* + &% +
+(=2+2e8=3ee+ (1 —eH) 2+ (2425 —ee)[1 — (e—¢)*]"* +
+2-te)(1-e) 1 —(e—e)]"*He—¢) [1-(1-¢) "] 1} =
= solution a;b;.
To establish the equivalence of the solution azb; with the solution
a;b;, we have used the result (84).
CaselV:a,=[-1-(1-)"He,b={-1-[1—(e-&)’]"}(e—-¢)"".
For this case |ap] > 1 and |by] > 1. Using the already computed
expression for 1 + (a2) (equality (44)), we have, according to formula (59),
the following solution for the integral Kj(e,é):

(104)  (12)Ky(e,e) = [[In(1 + ecosp)][1 + (e — é)cosp] ' dp = solution asb,=
0

=—all—(e— ¢y’ "In{2/)[1 + (1 -&)"?]} +2a[1 - (e - ¢)’] " ?]x

xInlay — 1/by| = 21 — (e — €)*] " 2In{(e*/2)(ar — 1/b>)’[1 + (1 =€)V 1 =
=a[l —(e—¢&)*] " n{(2)[1 + 1 —¢&* —2(1 — %) *](ar — 1/by)*x

X[l _(1 _62)1/2]71[1 _(1 _62)1/2]71[1 + (1 _62)1/2]71} —

=7a[l —(e—¢&)*] " 2n{(e/2)[2 - & —2(1 — )" *|(a, — 1/b)’[1 — (1 — &%) ?] '
x(1-1+e>)7 '},

It remains to calculate the multiplier (a, — 1/b,)%, in order to finish
the evaluation of the integral Kj(e,é) in this last Case IV.

(105)  (a— Vb)Y ={[-1-(1-€)"Ye—(e=&){-1-[1—(e—¢)]]"?} '}’ =
={1+(1-)" N1+ [1-(e-€)]"*} —e(e—&)}’e {1 +[1—(e—¢)]"?} =
= {1 e+ (1 _ez)l/z +[1-(e— e-)z]l/z +(1 —ez)”z[l —(e— e-)z]l/zx
xe {1 +[1—(e—e) 1" 3 =2{2-3e"+ &' +3e6 —2e’¢ — ¢ + %6 +
+ (2-2"+3eé— &)1 —e)?+ (2 -2+ ed)[1 —(e—€)]"* +
+(2-2e"+ee) (1 -1 —(e—e) 1" e {1 +[1—(e—e¢)] 32
Substitution of the above equality into (104) leads to:

(106)  (1/2)Ky(e,é) = solution ab, = n[1 — (e — é)*] " In{2[2 — &* — 2(1 — &%)"?x
{1 —[1—(e—e)]"*1* {2 -3&* + &' + 3eé —2e’¢ — " + %" +
+(2-2"+3ec— )1 - D)2+ (2 -2 +e)[1 —(e—e)]"* +
+(2 -2+ ee)(1— )1 —(e—e)*1" 21 {21 — (1 — &%) ?]x
{1+ [1—(e-&1" 1 -[1-(e-&’1"}13 1,
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where we have multiplied both the nominator and the denominator of the
argument of the logarithm by the same multiplier {1 —[1 — (e — e')z]” 2,

We also have the equality:
(107) {1+ [1—(e—&1" {1 -[1—(e—&/1"* Y =[1 -1 +(e—&)'T =(e—&)".

After some tedious algebra, we arrive at the final expression for
Ki(e,é):

(108)  (1/2)Ky(e,é) = solution asb, = n{1 — (e — é)*] " *In{e’ (e — é)* {2 - 3e* + & +
+3e6—2e% — "+ %+ (—2+2e" —3ee+ (1 — )2+
+(=2+2e8—ee)l —(e—e)]"*+ (2 - +ee)l — )1 —(e—¢)*] ) x

x{e*(e— &)1 — (1 — )"}y "} = solution a;b,.

In this way, we obtain that for all the possible cases, prescribed by
the formula (59) for the different combinations {a;, b;}, (i, j = 1, 2) of the
roots aj, ay, by and b,, the solutions for the integral Ky(e,é) are equivalent.
Of course, it is reasonable to check whether these evaluations remain valid
under these values of the variables e(u), é(u) and e(u) — é(u), when we strike
with nullification of some of the denominators in the intermediate
calculations. For example, if e(1) = 0, we have that:

(109)  Kq(0,6) Ezﬁln(l)](l +écosp) ' dp=0.

At the same time, from formula (84) (describing the solution a;b;),
we may evaluate the factor in the argument of the logarithmic function,
which is associated with the “peculiar” behavior under the limit transition
e(u) — 0. Omitting the multiplier 1/(e — é)*, which tends to 1/é%, when e(x)
— 0, we have to compute the following limit:

(110)  lim{{2 —3e* + ' +3ee —2e’¢ — &> + ’* + (= 2 + 2> — 3eé + &) (1 — %) +

e(u)—0

+((32 +26" —eo)[1 —(e—¢)]"2+ 2 - +eé)(1 - )" [1 - (e—¢)] %

{1 -(1-eH)" 1}

Because for the denominator we have:

(111)  lim{o/de[1 — (1 — )]} = lim[e(1 — %)~ "*] =0,

e(u) — 0 e(u) — 0
(112)  lim{d/de[e(1 — )~ 2} =lim[(1 — )2+ (1 — )Y =1.
e(u) =0 e(u) — 0

This means that if we want to evaluate the expression (110) by
means of the L Hospital’s rule, we need to apply it two successive times. It
is easily verified that the conditions for such an approach are fulfilled. In
fact, we have to calculate the second derivative of the nominator in the
equality (110), and than to take the limit e(x) — 0.
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(113)  [im{6*/0e* {2 — 3&* + &' + 3eé — 2e’¢ — 6" + £%6* +
e(u) — 0
+(=2+428—3ee+ N1 -+ (24267 —eé)[l —(e— )]V +
+@2-e+ed)(1-eN)"1—(e—e) 13} = lim{o/de{— 6e + 4¢> + 36 — 6e°¢ +
e(u) — 0
+2eé* + (de—3e)(1 — )2+ (2e— 26 + 3% —e?)(1 - &%) 2+
+Ae—e)[1—(e—e)]"*+ (Qe—2e"—2é+ 3% — e[l —(e—e)*] V' +
+(=2e+e)1-eD)"[1-(e—e)]"2+ (-2e+ e — )1 —e*) V' x
X[1-(e—e)]"?+(-2e+ e +26—2e%+ee)(1-eD)"[1—(e—e)] "} =
=lim{— 6+ 12¢* — 12eé + 26* + 4(1 — &))"? — (4e — 3¢)e(1 — &%)V +
e(u) =0
+(2-66+ 6eé— )1 —e?) 2+ (2e -2 + 3% — eeP)e(1 —?) P -
—(de—é)e—e)l—(e—e)’] " + (266" + 6eé — )1 —(e—e)"] 2+
+(2e—2¢"—2é+3e% —ed’)e— o)1 —(e—é)] -
—2(1 _e2)l/2[1 —(e— é)2]1/2 +(2e - d)e(l _62)71/2[1 —(e— é)2]1/2 +
+2e—é)e—eé)(1-e)[1—(e—é)] "2+
+(=2+3%=2e8)(1—€) V1 —(e—e)]"* + (= 2e + & — &*)e(1 — %) ¥ *x
X[1-(e—e)P]"*+(=2e+ e —e*)e—e)l—e) " l—-(e—e)] V*+
+(=2+37—dee+ A1 -1 -(e—e)] V2=
—(=2e+ & +2¢6 2%+ edP)e(1 — ) i+
+(-2e+e+26-2e%+ e e—e)(1 -l —(e—¢)] % =
- 6+28+4 +2—é2+4(1 _éz)l/z_éz(l _éz)fl/z + (2—é2)(1 _éz)—l/Z_
—2(1 - éz)l/z + éz(l _ éz)f 172 2(1 - e-2)1/2 (=24 éz)(l _ éz)f /2
_ 2é2(1 _ éz)f 1(1 _ éz)f V2 _ g2

Consequently (using two times the L’Hospital’s rule), we have:
(114)  {lim(e— &) *Mim{[1 — (1 —&))"?] {2 -3 + &' + 3e6 —2e%¢ — &* + &’ +

e(u) — 0 e(u) — 0

+(=2+28-3ee+ (1 - + (-2 425 —ed)[1 —(e—e)]"? +
+@2-e+ed)(1-N)"1-(e—e) "3} = (/) = 1.

It seems out that the argument of the logarithm in the solution a;b;
approaches unity, when e(#) — 0, and, correspondingly, the value of the
logarithm approaches zero. This is in agreement with the direct computation
of the integral Kj(e,é), when e(u) = 0 (see equality (109)).

As regards to the situation when e(u) — é(u) = 0 (this possibility is
excluded a priori by hypothesis during the calculation of the expression
(84)), a direct computation of the integral K;(e,é = e) gives:

(115)  (12) Ky(e,e =e) z;fzn(l + ecosp) dop = In{[1 + (1 — &))" ?]/2}.

Here we have used formula 865.44 from Dwight [6], setting in it a =
=1 and b = e(u), and taking into account that for the all parts of the
accretion disc e(u) is less than unity (by absolute value).The transition e(u) —
— é(u) — 0 may be attained in two ways: (i) by fixing é(«) and letting e(u) to
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approach é(u), and (ii) by fixing e(x) and letting é(u) to approach e(u). If we
apply these two methods to the expression (84), drawing the
correspondingly times the L Hospital’s rule for revealing of indeterminacies
of the type 0/0, we shall obtain a result which is identical to the relation
(115). This means that the formula (84) can be useful also in the case when
e(u) — é(u) = 0, despite it was derived under the rejection of the later
equality. It is important only to remember that in this “peculiar” case it is
necessary to perform the limit transition e(u) — é(u) — 0. This transition
gives also a continuous passage of the integral Kj(e,é) through the point

e(u) — é(u) = 0. We shall not write here the tedious computations, which
prove the above statements. We restrict us only to mention that they are
valid, in order to underline that the formula (84) (respectively, solution a;b;
= solution ajb, = solution ab; = solution asb,) is not limited by any
restrictions, imposed by the values of the eccentricity e(u) and its derivative
é(u) = de(u)/du. Of course, the quantities e(u) and é(u) oneself must obey
the three inequalities |e(u)| < 1, |é(u)] < 1 and |e(u) — é(u)| < 1. They are
induced by the properties of the considered elliptical accretion disc model
[1], as mentioned earlier. To end this chapter, we write into the final form
the analytical expression for the integral Kj(e,¢). Taking into account that
the transition of the integration over the azimuthal angle ¢ from the interval
[0, 7] to the interval [0, 27z] simply leads to a doubling of the result, we are
able to give the following analytical formula:

(116) K(e,é) Eszln(l + ecosp)|[1 + (e — é)cosp] ' dp =

=27[1 — (e—¢&)’] "In{{2 —3¢* + &* + 3ee¢ — 2e’¢ — &* + 2% +
+(=2+28—3ee+ M) (1 -+ (=2 +28 —ee)[l — (e—¢)°]"* +
+2-+ee)(1-e)[1-(e—¢)]"*}e-&) [1-(1-€)"7] '}

3. Conclusions

In the present paper we have moved one step more towards the
revealing of the mathematical characteristics of the dynamical equation. The
later determines the spatial structure of the stationary elliptical accretion
discs, according to the model of Lyubarskij et al. [1]. More concretely, it is
shown, that we are able to perform analytical evaluations of two kinds
of integrals, which are functions of the eccentricity e(u) and its derivative
é(u) = de(u)/du. Namely, these are Li(e,é), (i =0, ..., 3) and Kj(e,é), (j = 1,
..., 5), defined by the equalities (3) and (4), respectively. It is possible to
calculate analytical expressions for the integrals Li(e,é), (i = 1, 2, 3) through
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recurrence relations, under the condition that both the lower order (in the
sense of the indices i and j) integrals Li(e,¢) and Kj(e,€) are already known.
About the computation of the integrals Kj(e.é), (j = 1, ..., 5) the situation is
slightly different. There is not need to know the expressions for Lj(e,é),
(i=0, .., 3), but only these for the other integrals Kn(e,é), (m = 1, ...,
j — 1). In preparation to solve the so mentioned two kinds of integrals, we
have computed the “initial” integrals Lg(e) and Kj(e,é), which are
recognized to serve as starting points for the established recurrence
relations. The complete set of analytical solutions for the integrals Li(e,é),
(i=1, 2, 3) and Kj(e,é), (j = 2, ..., 5) will be expressed in a forthcoming
paper [7]. Until now, we have traced out the way to reach the determination
of these analytical formulas. As follows from the evaluations of Ly(e) and
Ki(e,é), we strike with somewhat tedious calculations of these two integrals.
But nevertheless, they lead to the pleasurable conclusion that all possible
combinations of the permitted values of the parameters give identical
solutions for the integrals Lg(e) and Ki(e,6). This property, i.e., the
uniqueness of the solutions, obviously facilitates our task to find the
analytical solutions of the integrals Li(e.é), (i = 0, ..., 3) and Kj(e.é),
G=1,..95).
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AHAJIMTUYHO NNPECMSATAHE HA JIBA UHTEI'PAJIA,
BB3HUKBAIIIUA B TEOPUATA HA EJIMIITUYHUTE
AKPEIIUOHHMU JUCKOBE. 11. PEHLIABAHE HA HAKOHU
CIIOMATI'ATEJIHUTE UHTEI'PAJIN, CbABPKAIIIN
JJOTAPUTMHUYHU ®YHKIUU B CBOUTE UHTEI'PAHIU

. lumumpos

Pe3ome

Ta3u cTatus e 9acT OT M3CJIeABAHUATA, TPETUPAITH MaTeMaTHIecKaTa
CTPYKTypa Ha cmayuoHapHume eIUNTUYHU aKPELIUOHHH JUCKOBE B MOJENa
Ha JIro6apcku u ap. [1], T.€., IUCKOBE MPU KOUTO BCUYKHU ATICUIHU JIMHUH HA
OpOUTHTE HA YACTHUIINTE JIeXKAT BbPXY €/lHA U ChIlla MpaBa JuHUs. | 1aBHaTa
OTJIMYMTETHA YepTa Ha BB3MPHUETHS TOIXOJ € Jla Ce HaMepAT JIMHCWHU
3aBHCHMOCTH MEXJy MHTErpajnTe, BIM3AIIM B TOBA ypaBHEHHUE. Te 11e HU
Ja7aT BB3MOXKHOCT Jla €ITMMUHHUpaME TE3W CIOXKHH (M W300I10 Ka3aHo,
HEW3BECTHW B aHAIMUTHUYEH BHUJA) (YHKIMH Ha CKCUCHTpUIUTETA e(u) U
HeroBara npousBojiHa é(u) = de(u)/du na opourture. Tyk u = In(p), kbpaeTO
p ¢ (QOoKamHMAT TapamMeThp Ha OpOMTaTa Ha CHOTBETHaTa 4YacTHIA OT
aKpelMoOHHUSl JWCK. B TeueHue Ha mporieca Ha peaqu3upaHe Ha Tasu
mporpama, Hue ce cOTbCKBaMe ¢ HE0OX0IMMOCTTA JIa HAMEPUM aHAJTUTUIHU
OIICHKHM 3a JIBa BHUJIa MHTETPAJIH:

2r 2
Li(eé) = f[ln(I + ecosp)](1 + ecosw"[l + (e — é)cosgp] i dp, (i=0,..., 3), and Kj(e,é) = I[ln(I + ecosg)[x
0 0

x[1 +(e — &cosp] ~7 dp, ( = 1, .., 5. B HacTosIIEeTO M3ClieBaHE, HHE HAMHpame
PEKypEeHTHU CHOTHOIICHUS, JaBallli HHU BB3MOXKHOCT Jla HW3YUCITHM
unrerpanure Li(e,é), (i = 1, .., 3) npu ycnoBue ue unrerpasmre Liq(e,é) u
Ki(e,é) ca Bede usBectHu. O6patHO, n34yucieHusnTa Ha unrerpanute Kj(e,é),
(j =1, ...,5), upe3 peKypeHTHH 3aBUCUMOCTHU, He UZUCKBam 3HAHHETO Ha
aHATUTUYHUTE perieHus: Ha unrerpanure Li(e,é), (i = 0, .., 3). C ornexn Ha
¢dakta, ye unTerpanute Lo(e) (Tori He 3aBucu ot é(u)) u Ki(e,é) cmyxar
KaTo “OTHpaBHU TOYKU~ B CHOTBETHUTE PEKYPEHTHHM CHOTHOILIEHUS, HUE
CME HaMepWId aHaTUTHUYHM H3pa3d 3a TAX. PemiaBaHero Ha MbIHATA
cHCTEMa OT aHAJIMTHYHU oleHKH 3a Li(e,é), (i = 1, ..., 3), u Kj(e,é), (j = 2,
...,d), e Obae gaaeHo apyrazae [7].
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