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Abstract 
The recent Cosmic Microwave Background (CMB) experiments have shown that 

the average density of the universe is close to the critical one and the universe is 
asymptotically flat (Euclidean). Taking into account that the universe remains flat and the 
total density of the universe Ω0 is conserved equal to a unit during the cosmological 
expansion, the Schwarzschild radius of the observable universe has been determined equal 

to the Hubble distance 1
2

~
2  cHR

c

GM
Rs , where M is the mass of the observable 

universe, R is the Hubble distance and H is the Hubble constant. Besides, it has been shown 
that the speed of the light c appears the parabolic velocity for the observable universe 

pv
R

GM
c 

2
 and the recessional velocity Hrvr   of an arbitrary galaxy  at a 

distance r  > 100 Mps from the observer, is equal to the parabolic velocity for the sphere, 
having radius r and a centre, coinciding with the observer. The requirement for 
conservation of 10   during the expansion enables to derive the Hoyle-Carvalho formula 

for the mass of the observable universe kg
GH

c
M 53

3

10~
2

  by a new approach.  

 
 

1. Introduction 
 

The problem for the average density of the universe   acquired 
significance when it was shown that the General Relativity allowes to reveal 
the large-scale structure and the evolution of the universe by simple 
cosmological models [1-3]. Crucial for the geometry of the universe appears 
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the dimensionless total density of the universe 
c


0 , where   is the 

average density of the universe and c  is the critical density of the universe. 

In the case of 10   (open universe) the global spatial curvature is negative 

and the geometry of the universe is hyperbolic and in the case of 10   

(closed universe) the curvature is positive and the geometry is spherical. In 
the special case of 10   (flat universe) the curvature is zero and the 

geometry is Euclidean. Until recently scarce information has been available 
about the density and geometry of the universe. The most reliable 
determination of the total density 0  is by measurements of the dependence 

of the anisotropy of the Cosmic Microwave Background (CMB) upon the 
angular scale. The recent results have shown that 00 1  , where the 

error 0  decreases from 0.10 [4, 5] to 0.02 [6]. The fact that 0  is so 

close to a unit is not accidental since only at 10   the geometry of the 

universe is flat (Euclidean) and the flat universe was predicted by the 
inflationary theory [7]. The total density 0  includes densities of baryon 

matter 05.0b , cold dark matter 22.0c [8] and dark energy 

73.0 , producing an accelerating expansion of the universe [9, 10]. The 

found negligible CMB anisotropy 510~ 

T

T
 indicates that the early 

universe has been very homogeneous and isotropic [11]. Three-dimensional 
maps of the distribution of galaxies corroborate homogeneous and isotropic 
universe on large scales greater than 100 Mps [12, 13]. 

 
2. Consequences from conservation of the total density of the 

universe during the expansion 
 

The flat geometry of the universe allows to solve some cosmological 
problems in the Euclidean space. The finite time of the cosmological 
expansion 1H (age of the universe) and the finite speed of the light c set a 
finite particle horizon 1~ cHR  beyond which no material signals reach the 
observer. Therefore, for an observer in an arbitrary location, the universe 
appears a three-dimensional, homogeneous and isotropic sphere having 
finite “radius” (particle horizon) equal to the Hubble distance 1~ cHR , 
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where H ≈ 70 km s-1 Mps-1 [14] is the Hubble constant and 1H  1.371010 
years is the Hubble time (age of the universe). 

 

The fact that the total density of the universe 0  is close to a unit is 

fundamental since only 10 
c


 supplies flat geometry of the universe. 

There are no arguments to assume the recent epoch privileged in relation to 
the other epochs; therefore, the universe always remains flat, and the total 
density of the universe Ω0 is conserved equal to a unit during the 
cosmological expansion: 

 

(1) 10 
c


 

 

The critical density of the universe [15] is determined from equation 
(2): 
 

(2) 
G

H
c 


8

3 2

  ≈ 9.510-27 kg m-3, 

 

where G is the universal gravitational constant. 
 

Considering 
34

3

R

M


  , where M and R are the mass and the Hubble 

distance (“radius”) of the observable universe, and replacing c  with 

expression (2) in (1) we obtain: 
 

(3) 1
2

23


HR

MG
 

 

Replacing 1~ cRH  in (3) we obtain: 
 

(4) 
2

2

c

GM
R   

Obviously, (4) appears the formula for the Schwarzschild radius of 
the mass of the observable universe M [16]. Therefore, the Schwarzschild 
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radius of the observable universe sR  is equal to the Hubble distance 
1~  cHRRs  ~ 1.371010 light years. 

 
From (4) we find: 

 

(5) 
R

GM
c

2
  

 

Evidently, (5) is the formula of the parabolic velocity for the Hubble 
sphere, i.e. the sphere having mass M and a radius, equal to the Hubble 
distance 1~ cHR . Therefore, the speed of the light c appears the parabolic 
velocity pv  for the observable universe. 

Below, we find that the recessional velocity Hrvr   of an arbitrary 
galaxy at a distance r > 100 Mps from the observer is equal to the parabolic 
velocity of a sphere, having radius r and a centre, coinciding with the 
observer. As mentioned at the end of the Introduction, the universe is 
homogeneous and isotropic on large scales greater than 100 Mps. Therefore, 
the average density r  of a sphere having radius r > 100 Mps is equal to the 
average density of the universe  : 

 

(6) 
G

H

r

m
cr 





8

3

4

3 2

3
 , 

 

where m is the mass of the total matter in the sphere. 
 

We find from equation (6): 
 

(7) 
3

2

r

Gm
H   

 

Replacing H in the Hubble law Hrvr   we obtain the recessional 
velocity of a galaxy: 

 

(8) 
r

Gm
Hrvr

2
  
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Equation (8) coincides with the formula for the parabolic velocity of 
a sphere, having radius r and a centre, coinciding with the observer. 

Finally, the requirement for conservation of the total density of the 
universe equal to a unit during the expansion allows to estimate the total 
mass of the observable universe M. Actually, replacing 1~ cHR  in (3) we 
find: 

 

(9) 
GH

c
M

2

3

  ≈ 8.81052 kg 

 

Obviously, this mass is close to the mass of the Hubble sphere HM : 
 

(10) 
GH

c

H

c
RM c

H 23

4
~

3

4 3

3

3
3 

  

 

Formula (9) has been derived independently by dimensional analysis 
without consideration of the average density of the universe in [17, 18] and 
practically coincides with the Hoyle-Carvalho formula for the mass of the 
universe [19, 20], obtained by a totally different approach. 

 
3. Conclusions 

 

The recent CMB experiments have shown that the average density of 
the universe is close to the critical one and the universe is asymptotically 
flat. The flat geometry of the universe allows to solve some cosmological 
problems in the Euclidean space. Taking into account that the universe 
remains flat and the total density of the universe Ω0 is conserved equal to a 
unit during the expansion, the Schwarzschild radius of the observable 
universe has been determined equal to the Hubble distance 

1
2

~
2  cHR

c

GM
Rs , and the speed of the light c appears the parabolic 

velocity for the observable universe pv
R

GM
c 

2
. Besides, the 

recessional velocity Hrvr   of an arbitrary galaxy at a distance r  > 100 
Mps from the observer, is equal to the parabolic velocity of a sphere, having 
radius r and a centre, coinciding with the observer. 



 

 65 

The requirement for conservation of 10   during the cosmological 

expansion enables to derive the Hoyle-Carvalho formula for the mass of the 

observable universe 
GH

c
M

2

3

  by a new approach. 
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ПОСЛЕДИЦИ ОТ ЗАПАЗВАНЕТО НА ТОТАЛНАТА 
ПЛЪТНОСТ НА ВСЕЛЕНАТА ПРИ РАЗШИРЯВАНЕТО 

 
Д. Вълев 

 
Резюме 

Съвременните изследвания на космическия микровълнов фон 
показват, че средната плътност на Вселената е близка до критичната, а 
Вселената е асимптотически плоска (Евклидова). Вземайки под 
внимание това, че Вселената остава плоска, а тоталната плътност на 
Вселената Ω0 се запазва равна на единица при космологичното разши-
ряване, е установено че Шварцшилдовият радиус на наблюдаемата 

Вселената е равен на разстоянието на Хъбъл 1
2

~
2  cHR

c

GM
Rs , 

където M е масата на наблюдаемата Вселена, R е разстоянието на 
Хъбъл, а H е константата на Хъбъл.  

Освен това е показано, че скоростта на светлината c се явява 

параболична скорост за наблюдаемата Вселена pv
R

GM
c 

2
, a ско-

ростта на отдалечаване Hrvr   на произволна галактика на разстояние 
r  > 100 Мпс от наблюдателя, е равна на параболичната скорост за 
сферата, имаща радиус r и център съвпадащ с наблюдателя. 
Изискването за запазване на 10   при космологичното разширяване 

дава възможност да се изведе формулата на Хойл-Карвальо за масата 

на наблюдаемата Вселена kg
GH

c
M 53

3

10~
2

  по нов начин. 

 


