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l. Introduction

During the past four-fle years there has been an obvious in-
terest in the theory of wormholes, which could possibly provide an explanation to the
long-lasting and fugdamental problem about the vanishing of the cosmological con-
stant and the modifrcation of coupling constants in quantum gravity. Wormholes can
be defined as microscopic connections between smooth, large and distant regions of
space-time, appearing as a result of quantum gravitational fluctuations of space-time
topology []. It has been argued that in the process of pinching off wormholes carry

into the hole will be losi for an observer
mixed state rather than a pure one. Coherence loss has also been advocated by
S. Hawking and R. Laflamme [?] in reference to the problem about nonrenormaliz-
ability of giavity due to the infinite number of effective interactions with unpredict-
able strengths. This effect is supposed to be signihcant fbr scalar particles [8].

However, an opposite point of view also exists - baby universes and wormholes
do not cause an effective (observable) loss of quantum coherence [9],since a se-
quence of measurements rapidly collapses the wave function of the family of uni-
verses into one of an infinite number of coherent cr eigenstates. The same opinion,
although given a different interpretation, has been supported also by S. Coleman [10]

- coherence has never been lost, because the different phases between the different
cr eigenstates remain unobservable even afler a sequence of interactions"
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-. Another important aspect of wormholes is that they tum all space-time cou-
P_ling constants, masses and the cosmological constant into dynamic a variables
Il I,l5l and thus the_vanishing of the cosmblogical constant and the smallest possi-
ble cr - value of the Newton's gravitational constant ar.e strongly favoured [16j.In the strict mathematical sense, the insertion of wormhoG-ends in ttre UaUy uni-
verse is accounted by additional terms t, = t,(o,aro) in the effective Lagrangian
of wormhole theory [2,3,9-ll];
(r) Lq = Lo *Zb,* oi[,,

where Lo = Lo(@,duO) and L, = L,(e,6uO) are local functions of the background
scalar and_gravitational fields, ai and ai ate respectively creation and annihilation
operators for baby universes and i. is thd pCT transform of i"

aper that the interaction between a fluctu-
scalar field and a perturbed second order
rance of the above mentioned additional

the short distance limit r-+0 (i. e.

*",:T"Tlfi: *T ::: :i,lT*3 _

pendent and thus "seltrses" the metric perturbations of the baby universe due to the
presence of the have been suggested also in ref. [12,13],
where in the first s have been tr6ited as spherical pertuiUai
tions of the back

(2) sr, - o'a'(t>u" * 4"),
where a is the scale factor and h,,denotes the metric perturbation, usually expanded
in scalar, vector and tensor harfionics on the three-sphere [la].

The present paper is organized as foliows:
In Section 2 the scalar and gravitational fields have been decomposed into back-

ground ones (@o, gu,) and fluctuating ones (O', ftr,u):

(3) .gu" : gl," * hu, and @ = @o + @',

where we assume that the fluctuation variables are of second-order and the metric

perturbation varies inversely proportional to the space distance, i. e. n = d !\.ro,
Fv lr/

simplicity spherical harmonics
well-known quantum-gravity p
ometries and matter (in ttre present case sc
ed also by an integration over the fluctuati
for the presence of wormholes.

In Section 3 the method of zeta-function regularization has been applied for
calculating the determinant of a second-order differential operator, obhi;ed after
performing the integration over the fluctuating scalar field variable O'in the parti-
tion functional integral Z. Calculations h rve been perforrned in the short-disiance
limit r-+0 and also under the as elds do not change in
space aldtime sorapidly.if com lds. That is why b-ack_
ground fields can be considered
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(4)

In Section 4 a brief discussion of the physical meaning of the additional non-
polynomial term

L,^(gui,.,)=;[ #*.;1]t
has-been per_formed. This term, obtained in the effective wormhole Lagrangian of
background fields @' integration, evidently accounti for-the in-
teraction between near thl wormhole anci in this way .,signals"'
o{_l!" presence of In order to see whether quantum cohJrence
will be lost or not it has to be checked whether the additional nonpolynomial term
will persist atlarge distances (in the limit r-+oo), where a distant observet is able to
make certain conclusions. However, for that purpose the self-consistent problem

minacy-of coupling constants in quantum gravity,as far as the influence of short dis-
tance physics is concerned.

2. Quantum gravity partition functional integral
in the presence of fluctuating scalar
and gravitational fields

(l.rpa) scalar r,etc, co'pSlil?#rLt l"int 
is the effective action of self-interacting

(6) g =60 *(D', fu" = et" +frp,,

where for convenience we have used the ,hat, variables:

(5) s = la'x!,lrl-ri,^+ gF'6uso,q +Qtf * qonh, * l,q.].

The first term in the gravitational part of the action, (n is a
numerical coefficient, ling between scalai and gravitational frelds
and the integration is closed four-manifold liI of the baby uni_
verse.

As already mentioned in the Introduction, the gravitational and scalar filds are

decomposed into backgrounO (01", .i,,) and flucruating onr. (i 
", 

o ),

(7)

(8)

Et' = Gg",iu' = Gh'" ,*" =4:),
instead of the conventional ones gp, and, hp,.We assume also that the signature of
the background metric

ds2:dt'+a'Q)d'a.
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(e)

in positive (+, +, +, +). In (8) a'(t) is the scale factor and O" - the unit three-
sphere.

In terms of all background and fluctuating variables, the quantum gravity parti-
tion functional integral can be defined in the following way:

z : ! *ag;' 
ao ode' dilu' r-'('flu 

*iuu' ^o **' ),

( r\
where Slfi" + hu,,Qo + O 

I 
is the action (5) in terms of the decomposition (6).

According to Hawking's definition [7,18], the integral (9), if taken only in re-
spect to the background variables, gives the transition amplitude:

(10) t : (*f', rf,)t'?) 16('),g(ott') )

to go from a three-geometry t!!{t) on an initial (baby universe) spacelike surface to a

three-geometry g(0X') on a flrnal (baby universe) spacelike surface and the integral is

taken over all four geometries and scalar fields, which match (,ilt),gl'J(')) uod

I ^ lt\ /^\/.\\

(.Dl'',glJ'''f on the initial and final surfaces respectively. Unlike Hawking's defini-
tion, where no'fluctuation variables are taken into account, the proposed new defini-
tion (9) of the modifred partition functional integral encompasses also the short dis-
tance effects near the wormhole, which will be further investigated. Note also that a
complex rotation t) -ir of the time coordinate has been performed so that the path
integral (9) does not oscillate and does not converge.

By use of (6) and (7) the action can be decomposed into severdl parts, some of
them containing both background and fluctuation variables:

(ll),s(e;" *f,,",6, +o')=",(61",.ir)+s,(fr",60, o')*s,(.',gi")

*",((o-I) * E(.i.,@*l)* q(0,, r',@u'f). +(o,p'"y 1
Terms ^S,(....) account for second-order metric perturbations and terms, con-

taining both Second-order metric and scala field pertuibations account for scalar
particle-graviton interactions. This is unlike the case investigated in Hawking's pa-
per [19], where the performed action decomposition (in terms of our notations)

s(e;" + fr,' ,60+o')= s,(4",6,)+q(t,")*s,(o')(r2)

in practice excludes any such interactions.

We will denote the integral over the {ef"}, {,a*}""0 {4.} fields in (9)by z,
and we will focus only on tl e evaluation of the (D' integral:

(13) z= z,!ao',-l''['''to''
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We shall also assume that the fluctuating scalar field changes more rapidly in
comparison with the background fields so that the latter may be considered "frozen"
in space and time, i. e. stationary and uniform in space. After calculating the differ-
ent terms in the action (13) and rearranging the different kinds of terms, containing
(D', the following expression can be obtained:

(14)

(l s)

n -f aa,l oo 2*a(auo')(a"o')+(auo')1a,oop"o']
,=Z,ldQ'e r L

where a, b and,c are, as expected, functions of the background fields 6o and 6f" and

also of the perturbed gravitational field frr":

6= Q[, +hp,,(16)

(17) c = zqo6,(E[". * i*X*ll, + nfJ 
) 

+ +i,6;[fi' . :fr)
+m, fru' h u"6, + q6*n['J,i 

o + 2],i* ht u,6'0.

In deriving (14) we have neglected terms, higher than second order in O'. After
performing the integration by parts in (14), the partition functional integral Z canbe
written in the following way:

(r8) z=2,!ffi'r-[ao'la')a'*o'ef.

' ' In (18),f andfl arc differential operators of the kind:

(re) 2= a-na-(a.n)a, = a-lnau* a*o]a",

h = c - br'6, - (u",iXr, uY 
" -lua, *a,a]a"60.

It utill be proved in the Appendix A that by a suitable gauge transformation in
respect to the space variable r
(20) O', = O, + f(r)
the first order derivatives in (19) can be removed and thereforeA zndE can be writ-

2= a' -ba',
h = c-bd6o.

Note that to the positive signature of the metric the Delambertian tr is:

(23) a'E'= -; +A(') ,
dt

ten as:

(2r)
(22)
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where Arc) is the Laplacian of the space-three-manifold, embedded in a given
three-geometry. !n other words, tle choice of the variable rwill not affect the eigen-
value spectrum of the operatorsl andB , since the background fields (and thus the
functions a, b and c depending on them) are "frozen" in space and time according
to our previous assumption.

3. Zeta-fiinction rcgularization and the resulting
s calar- gravity background fi eld renormali zation

Our main aim in this Section will be the evaluation of the in-
tegral (18). First, we make the simple transformation:

(24) I ^^@ = @, -: BA-'
i

and thus (18) can be written in a more familiar way:

(2s)

= ,r"iu"'-iu'*" 
1a"t 

A)-i .

Note that the transformation (24) can still be applied no matter that A and ii
are not functions, but operators.

The'determinant of the differential operator 2 will be calculated by applying the
well-known method of zeta-function regularization, previously developed by Hawk-
ing [20] and others a21,221. For this purp<ise the following basic formulae will be
used:

(26)

where

(27) E(")= Ir;
is the defined in [2O]generalized zeta-function and ]., are the eigenvalues of the dif-
ferential operator l, s is an integer num er (s>2). Since we intend to reduce our
problem to a well-known quantum-mechanical problem, we will assume that the
space-three manifold, over which the operator 2 , is defined, is the three-sphere. Of
course, the eigenvalues can also be found in the case of other manifolds.

In the present case we denote the eigenvalues of the operator aV 2 bV tr, = 81.
This means that the operator equation

(28) 4Y=0
is being satisfied by an arbitrary function Y of the kind;
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(29) y = e""'.f,Q),

The last also means that only stationary states of (28) will be investigated. Sub-
stituting (29) into (28), the following equation for the eigenvalue functions { is ob-
tained:

where A(') is the Laplacianon the three-sphere (i. e. in spherical coordinates r,0 and
a):

(30) d')I(') =l-u: +v(, oo,fl)h(')

(31)

^o\=+L("al* I ' 
u[,ri',ea)* -J--!-t'a.( ar) 12 sinoae[---- ae) ,2"in2oa,p2'

The function v(r, oo, sl") can b-e evaluated in the short-distance limit r-+0 by
useof (15)- (17),(21),(22)and,thefollowingestimatesforthe graity field[23]:

i,u. =Ghu' =4.]' +=r[+} Rp -+-r[+l
\r,/ ox \r ,/ ac dx \r ,/

_ 
Keeping in mind the above assurrptions, the following expression in the limit

r+0 is derived:

(32)

@) y(r, d,, fl"'))= 
"nll)€o 

* I, ,@,+ or"tii)+ i(rr,r.i3). )(e,o,al) * +Eop,,

where ^r.v Tz,T.t, ar€ constants. The function (33) may physically be interpreted as a
three-dimensional potential barrier of the kind:

(34) v(r)= 4+lL+9t-*I; 4,8,, c,, D, areconsrants

which will evidently affect rn" 
"rr**rues 

of the operator 2 .rtmaybe thought as if
in the vicinity of their neck (r-+0) wormholes create an effective potential barrier, in-
fluencing scalar.(and gtlrer) particles, penetrating down the wormhole from the baby
universe. Since in a higher approximation the perturbed metric may involve highei
powers of 1, we should keep in mind the simple fact-from quantum mechanics [24],

that the motion of a particle in a potential flreld U: - 
" 

C > 2) is restricted in a small

area around the coordinate center and will finally fall upon it. However, such a move-
ment is unlikely in the present case because of space-time nonlocality @ig. l).

Moreover, such a restricted motion would contrddict current models in quan-
tum gravity, based on the assumption about infinite past and infinite future states on
different space surfaces [25]. It can be therefore concluded that a particle, falling
down the wormhole will probably "sense" only the lower order terms and (- 1 uoO - 1)
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Fig. l. Particle motion down the wormhole from an initial stat€ to
a final state and-thus not crossing the interrnediat€ stat€ of th€
baby universe [25]

of the potential barrier. However, the following ques-
tion inevitably arises: if the fluctuating metric involves

higher order terms of 1, how can this process of

,ffi?lf ';ff iJ:*,t,:"ffi:il,';#:1il3J1l'ffiT;
and gravitational fields continuously evolve in a self-consistent manner and thus
changing the coefficients 1,, 8,,C,,D,, unlike in our simplified model. By means of
a such self-regulating mectrani-sm the potential terms are adjusted in such a way so

that falling particles are influenced only by lower order potential terms in I . That is

why we shall neglect terms in the fluctuating metric with higher powers *"r ,f+].
\r- )

Further, we present the eigenvalue function f,(r) asz

(35) f,Q)= x,?Y^@:,q\
where Y^(0, V\ are the usual spherical functions. We have to keep in mind also that

in a spherically symmetric field an additional "centrifugal" term I x, appears

i1-the--poteltial as a result of moment conservation and level degeneracy [24]. From
(30), (31), (33) and (35) the following equation for 26"(r) is obtained:

ry. ?+.1", - 4 - + -7 -91,. = o,

4 :"Rll) .)@ +or6j)r,,

B, =3y rt'6f,,(39) C, = E.FSX"

a-nd / can be regarded as the conserved momentum of the baby universe. In terms of
the new variables

(36)

where

(37)

(38)

(40)

(41)

(42)
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equation (36) can be written as:

(43) W*zo*,G) *[+_._,'(,'r.t)-lr_1oy=0.
dp' P .dp l+ P P' l'vtr 

\ /

It is reasonable to search out for a solution, which is finite at p+0 (of the form

X, - p")and which is vanishingly small at p-+oo (of the form 26, - "l) [24]. Both

assumptions are physically reasonable, since all fields decay at infinity and it is irseless
to deal with infinite solutions at p-+0. Therefore, the function t(p) can be witten as:

(44) x,(P)= "-iP"'b)'
Substituting (44) into (43), we derive the equation

pw" + Qt, + z - p)w' * (n, - t, - r)w : o,

where the prime denotes the derivative in respect to the variable p. F4uation (45) has
a well-known solution [24]:

(46) ,(p)= F(-n,+t,+1,2t,+),p),

where F is the so called degenerate hypergeometric function:

-/\ / '(47) F(o, y, )=*)lr,Q- rf"r- dt:r+a** "$".,t?*....
' zoiN' ' 't t! 1(1 +1)2!

The contour C comes from infinity (when Re t+ -oo ), goes to infinity (when
Re /+ f oo) and haspoles at f:0 and t:z.It is evident from (47)ihat the solution
F (u,y, z) is vanishing at infinity when cr<O, In the present case cr:-nr+lrtl and so
the following condition has to be fulfilled:
(48) nr) lr+l

This means that the eigenvalue levels are resticted from below. From (37), (38)
and (41) the eigenvalue spectrum ?", 

= 
Ei can easily be found:

(45)

(51)

(4e) tu - = E,- = L(rt + ol,ti,1)- 
3Yr\6i 

,n n 2\ ' ul qni

where z, is the renormalized mass due to the action of the background gravitational
field:

(50) m? = m'* Z..Rt).

It can easily be checked that the spectrum (a9) is always positive in the limiting

"a,2 ;,
case $..1. In the opposite case (*<< l) E^canbe positive if the inequalitymi 6l,0;

"irr#:
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is satisfied. If we assume thaty, and l, are positive constants, this may really happen,
since according to (48) the eige::nvalue levels are restricted from below and the inves-

tigated case -i <<l requires i",ifr to-be great. lVe will also assume that the posi-
6l,o:

!tl^q (?1r! tlr-u-s coltinuogs) eigenvalue spectrum ranges from zero to infrnity. From
(39), (42),(51) and (48) it is evident that such an assumption is justiflrable especially
for small / and small constants E^ or 0.

Finally, the generali zed, zetarfunction (27) can be calculated, replacing the sum
over nr by a continuous integration (since the spectrum is continuoui) and-multiply-
ing each ?"^ = E', from (49) by n2, since each eigenvalue level with a main quantum

n-I
(level) number n is I Qt +t)= n2 degenerate:

,=0

(s2) e(,)=ia,,nix-;, =ia,,nl:V:+ oi,6i)y, -+9-1 
"

o o 'L2t ' 4n, 
I

By making the substitutions

(53)

(54)

the integral (52) can be written as:

, : 2lr+l)(55) 6(')=+lar' "''-\/ K"J0 ,(, r)'.
lni --l

- .. Tl" last int-egral 
-is 

of well-knornr, ,ro"l;a ;i be evaluated by means of the
following formulae [26]:

(56)
.(T).(" T)

z@z)**r7'1 '

where f is the gamma-function f(cr) = te-,x"'fu. we obtain the following expres-

sions for the generalized zeta-function i1s; and its first derivative:

((s) = l-'\ / 
rK"

(s7)

60

*=|r,@+oi..ii),



(61) z: ,r"f,u"-'-lnza-zf ( at\ 1 i

L*o[-;J"=,]

(58) ,EG)=--* r(s)++'.(",--1)f*1,".1]-*6). ds 
"r+r^\",r'*r it"l \ ( z) ,,))'

wherg,I(s/ denotgs the term inside the brackets in (57). The following standard ex-pressions have al6o been used:

r'(z) = r@y(} r(z+ r) = rr(4
(5e) y(n+l)= r* )...)_r, yQ+D=1*v(r} 

,

Y(z) iq the Oiler function and y -'the Oiler constant:

=,*[t * 1*...*1 - mr) = 0,s7721s7.z+o\ 2 n )
The final result for the partition functional integral (25) with account of (26),

(52) and (58) is

= z, oolh, A_, _ ! h, A,f *irt * )t1

4. Discussion

if we rewrite it into 
"""ff;'oJ#cal 

meaning of eq. (61) will be more easily revealed

(62) z : !aE;" ao,^r(;e,;-' -:8, A")

. x 
"^o{-[a,*F,(gf',.$)+2,*(s;",60),

where we will call r.*(f;",60) u renormalized (nonpolynomial) Lagrangian:

'3(63) 
'*"(elt,6o)= 

lf-'' tae 1u' zL ,, @?.el'0f)-l
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(64) 6- {.(r-*t'}

N) f ,Q) =l- 
": 

. r?,a1, Ei )]

.[;).i,
,.(o)

-and has an important physical meaning. Remember that 6 has appe-ared in thePro-

cess in the evaluatiott of tti" zeta-functio-n integrals (52), (55), originally derived from

equation (55):

(65)

with a potential barrier V?,6 ,, #" ) tf 
f ), reflecting the properties of short distance

certain extent 5 maY be
and background fields.

PlaYs an imPortant role
in the renormalization term (63) and thus shows that the initial "nonlinear" features

approximation of the fluctuating gravit
/'\

possible to find an exact solution of (65), when higher order terms - Ol + lwere in-
[r'/

the additional term (63) is not unique and
sumed in advance. That is why the result

ll;1"'1?!"tj';ncoo;clusioninrer'[16]about
of G (the Newton'

is ce effects that we
of other constants."m 

:r it was emphasized that quantum inde-
terminacy will not be so clearly manifested because only the lowest order terms

/r) ( r )
- Ol: I and - Ol + | would probably be the most dominant ones, when investigat-

\r.i \r./
ing the motion of particles through c

coherence loss it is worth remindin e

sewer. In the present case, however, we h s

about scalar and gravitational field evolution and that is why_ye do not know wheth-
er the additional-renormalization term will persist or die off at large distances' In
other words, although the additional renormalization term (63) resembles in a sense

the additional term (l), here we cannot
are surely induced. However, such a p
should not be excluded until the self-
tional field evolution is solved. The latter

solved. It is l
then such a s frarnework of
n theory [27] theory, sPace

nonuniform distribution of a given pti'yiici variety of sce-

narios for its evolution.
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It should be noted also that the correct treatment of the partition functional in-,:'3l3:ifr ;
ested only

ically flat at infinity (or, = (l) - an assumption, frequently applied in wormhole
theory. Also, we have removed all fist-ord

As a final result of this paper, it
ating topologies in general) may poss
lar and gravitational fields. This can
effect and is worth further investigating i
essence of this phenomena.

5. Appendix A

gauge (coordinatel,r".IrtrilfitLbe 
proved in this appendix that after performing a

(66) O'r=Or*f?)
the operatotsri attd.6 can be written as second order operators only and in terms of
the new space variable r'in (21),(22):

(67) 2: o' -b'a' ; fr:c-b'o' 6^.

in other words, in accordance with the formulas (19)

(6E) 2: a-ba-(u,4, = o-l*,*(r,r)]r",

n : c - bn6. - (u.6, Xu ub) =, -loa. * (a.o)](r..i, )
we will have to establish the validity of the following operator equality:

(6e) lna *b n\la = bo' o'
L F \r'lln Fr

which has to be satisfied for any gauge transforrnation of the kind (66). After substi-
tuting (66) into (69) we obtain

(70) bo,o"+(u,rF,=b,(au*tQ)\a,.t@).
In (70) and (69) D'is a function of the new variable r'. However, according to the

equivalence principle in gravity theory the relative order dependence lz-" = o(|) in
the function

b: fi;, +fi,,



should hold in any cooldinate system. Thdt is why it can be writ'ten:

(7r)

and therefore the first terms on the left and the right side of (70) cancel each other.
Furthermore, let us assume that (70) acts on an arbitrary (but known) function g(r).
As a result we derive:

(72)

If we denote

(73) _u = t;.(,)

and take into account the estimates:

(74) b(r)'=:'

finally we derive the following differential equation foi the functionfir):

:#.i."!r*o$=o

(a,a) - ar](r"s) = l* rt). u'F.

C[

O D:---:uz'r

(75)

Our statement will be proved if we establish that a solution of this differential
equation exists foran arbitrary functionflr). However, the differential equation (75)
is of the type:

(76)
# = '(t'')

and from the theory it is well-known that a solution of this equation always exists.
This precludes the proof of the statement.
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Penopvar r4sar\urs Ha $oHoBu IIoJIera
n 6lugrara oKoJrHocr Ha rorloJlornqecxrt
rrpocrpaHcrBeHo-BpeMeBl,t crpyKTypl{
(or run ,,pbqKlr')
BCJTeACTBT{e B3a}IMOAefiCTS}re Ha cKilrapHII
fl r'paBnrarllrorrH]r rloJlera or BTop]r rlopsAbK

Eoedau fluuumpoe

(Peeroue)

B pauxur:e I{a reopntra 3a [pocrpaHcrBeHo-BpeMeBl{Te
crpyKTypr.r (or rnn ,,pbqxrr") B Hafi-paHHara BceneHa e AoKa3aHo, rle B3aI'IMoAeficr-
Buero Ha OnyKTyarltronHr.r cKaJrapHtr rr rpaBr{TarluorrHlr rroJlera or BTopu rropcA6K
BoAtr Ao peHopManlrgaqlafl, Ha AeficrBrrero Ha Qononrare lloJrera c AorrbJrHrITeJIeH
qreu oT HerroJlr{ItoMHaJIeH TEn. flpnnoxeu e MeToAbT Ha A3eTa-Syurcqnr peryJltpu-
3a,Ilg.g 3a n3qUCISBaHeTO Ha HerroJrtrHoMEaIHII.S rIJIeH, 3aBI{CeUI CbIrlecTBeEo oT Ee-

ntrHefiHlrre cBofr crBa Ira cKaJlapnoro rIoJIe (1"@areopu.a)'
flpegnoxena e Qu3nqecKa IIHTeplpeTaqI,{.s, cbIJIacHo KotTo cTpyKTypnTe

,rpbrrKll" Cb3AaBaT eQeKTnBeH KBaETOBO-MexaHI{qeH nOTeHqEaJIeH 6apuep, Bb3-

Aefi crBaIrI Bbpxy qacrtrIlure, rlpeMtrIraBalrln IIp€ pbrlKrrre'
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