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1. Introduction

During the past four-five years there has been an obvious in-
terest in the theory of wormholes, which could possibly provide an explanation to the
long-lasting and fundamental problem about the vanishing of the cosmological con-
stant and the modification of coupling constants in quantum gravity. Wormholes can
be defined as microscopic connections between smooth, large and distant regions of
space-time, appearing as a result of quantum gravitational fluctuations of space-time
topology [1]. It has been argued that in the process of pinching off wormholes carry
away information, which becomes inaccessible to a macroscopic observer at infinity,
i. e, loss of quantum coherence is observed {2,3]. A typical example for quantum
coherence loss is the progess of splitting up of a particle into two particles near the
horizon of a black hole [4—6]. The information from the particle, which has fallen
into the hole will be lost for an observer at infinity and therefore he will measure a
mixed state rather than a pure one. Coherence loss has also been advocated by
S. Hawking and R, Laflamme [7] in reference to the problem about nonrenormaliz-
ability of gravity due to the infinite number of effective interactions with unpredict-
able strengths. This effect is supposed to be significant for scalar particles [8].

However, an opposite point of view also exists — baby universes and wormholes
do not cause an effective (observable) loss of quantum coherence [9]since a se-
quence of measurements rapidly collapses the wave function of the family of uni-
verses into one of an infirite number of coherent « eigenstates. The same opinion,
although given a different interpretation, has been supported also by S. Coleman [10]
— coherence has never been lost, because the different phases between the different
o eigenstates remain unobservable even after a sequence of interactions.
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Another important aspect of wormholes is that they turn all space-time cou-
pling constants, masses and the cosmological constant into dynamic « variables
[11,15] and thus the vanishing of the cosmological constant and the smallest possi-
ble o - value of the Newton’s gravitational constant are strongly favoured [16].

In the strict mathematical sense, the insertion of wormhole ends in the baby uni-

verse is accounted by additional terms L y= L (cb, auq)) in the effective Lagrangian
of wormhole theory [2,3,9—11];

(1) I,=L,+ Z(a; +aj)L‘.,

where L= Lo(cb, a“rp) and I, = Li(tI), apd)) are local functions of the background

scalar and gravitational fields, ¢ and a, are respectively creation and annihilation
operators for baby universes an(f i* is the PCT transform of i.

It has been suggested in the present paper that the interaction between a fluctu-
ating second order self interacting (A®*) scalar field and a perturbed second order
gravitational field may lead to the appearance of the above mentioned additional
terms in the effective wormhole Lagrangian (1), if the short distance [imit r—>0 (. e
the near vicinity of the wormhole) is considered. An important aspect of the pro-
posed theory here is that the scalar field is assumed to be time and coordinate de-
pendent and thus “senses” the metric perturbations of the baby universe due to the
presence of the wormhole. Similar ideas have been suggested also in ref, [12,13],
where in the first approximation wormholes have been treated as spherical perturba-
tions of the background three-metric Q 7

2) B ’a (qu +h ),

where a is the scale factor and A , denotes the metric perturbation, usually expanded
in scalar, vector and tensor harmonics on the three-sphere [14],

The present paper is organized as follows;

In Section 2 the scalar and gravitational fields have been decomposed into back-
ground ones (D, g,.) and fluctuating ones (P, A*):

) = o
(3} gw—gw+hw and o= +&,
where we assume that the fluctuation variables are of second-order and the metric

perturbation varies inversely proportional to the space distance, i.e. 4 — O( l). For
135
%

simplicity spherical harmonics decomposition has not been taken into account. The
well-known quantum-gravity partition functional integral Z over all space-time ge-
ometries and matter (in the present case scalar) fields has been defined, supplement-
ed also by an integration over the fluctuating variables (@), h ) and thus accounting
for the presence of wormholes.

In Section 3 the method of zeta-function regularization has been applied for
calculating the determinant of a second-order differential operator, obtained after
performing the integration over the fluctuating scalar field variable &' in the parti-
tion functional integral Z. Calculations have been performed in the short-distance
limit ¥—0 and also under the assumption that background fields do not change in
space and time so rapidly if compared with the fluctuating fields. That is why back-
ground fields can be considered “frozen” in space and time.
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In Section 4 a brief discussion of the physical meaning of the additional non-
polynomial term

3
) 5 3y, 02 2
@ L (& ®,)= ;[m]

has been performed. This term, obtained in the effective wormhole Lagrangian of
background fields after performing the &' integration, evidently accounts for the in-
teraction between the fluctuating fields near the wormhole and in this way “signals”
of the presence of the wormhole itself. In order to see whether quantum coherence
will be lost or not it has to be checked whether the additicnal nonpolynomial term
will persist at large distances (in the limit r—o0), where a distant observer is able to
make certain conclusions. However, for that purpose the self-consistent problem
about the space (and time) evolution of the background scalar and gravitational
fields has to be solved, which is not very easy to deal with at all. Since the result ob-
tained evidently depends on the approximation, in which it has been worked out, to
a certain extent it confirms John Preskill’s conclusion [16] about quantum indeter-
minacy of coupling constants in quantum gravity, as far as the influence of short dis-
tance physics is concerned.

2. Quantum gravity partition functional integral
in the presence of fluctuating scalar
and gravitational fields

Our starting point is the effective action of self-interacting
(19"} scalar field, coupled to gravity:

(5) S= i[d“xé\/g[—M;R +£"0,60.0 I+(mz + ﬁuR)(pz + ’Mp“].

The first term in parenthesis in (5) is the gravitational part of the action, E iza
numerical coefficient, expressing the coupling between scalar and gravitational flelds
and the integration is performed over the closed four-manifold A of the baby uni-
verse,

As already mentioned in the Introduction, the gravitational and scalar filds are

decomposed inte background (§3 (io) and fluctuating ones (}%w, (I)'):
(6) [0) :&)D +O', g =g 4 e,

where for convenience we have used the ‘hat’ variables:

(7) g‘.;w = Jgguv’guv = J‘Ehuv,hm’ A ({l}

instead of the conventional ones g** and 4**, We assume also that the signature of
the background metric

® a5 = df +a ()d'e,
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in positive (+, +, +, +). In (8) a1} is the scale factor and {2, — the unit three-
sphere.

In terms of all background and fluctuating variables, the quantum gravity parti-
tion functional integral can be defined in the following way:

~5{80 +huy- Bg ')

©) z=| agrdddodie ,
M

3 ~ -~ I
where S[ﬁ:v + kw, D +D ] is the action (5) in terms of the decompaosition (6).

According to Hawking’s definition [17,18], the integral (9), if taken only in re-
spect to the background variables, gives the transition amplitude:

(10) Z= (60", g0|4".g5)

to go from a three-geometry gﬂ}(” on ar initial (baby universe) spacelike surface to a

three-geometry g'*) on a final (baby universe) spacelike surface and the integral is
taken over all four geometries and scalar fields, which match (CDE,”,gffl“") and

(C'f)f’ : gﬁ)(zj) on the initial and final surfaces respectively. Unlike Hawking’s defini-

tion, where no fluctuation variables are taken into account, the proposed new defini-
tion (9} of the modified partition functional integral encompasses also the short dis-
tance effects near the wormhole, which will be further investigated. Note also that a
complex rotation 1—> —iz of the time coordinate has been performed so that the path
integral (9} does not oscillate and does not converge.

By use of (6} and (7) the action can be decomposed into several parts, some of
them containing both background and fluctuation variables:

a1 s(gy + b0, +0)=8,(8, &)+ 5,8, @)+ 5,(®.8")

£5,((F J+ 8,8, () Jo 5[ @o 0 () Jo5, (@)

Terms §(....) account for second-order metric perturbations and terms, con-
taining both second-order metric and scala field perturbations account for scalar
particle-graviton interactions. This is unlike the case investigated in Hawking’s pa-
per {19], where the performed action decomposition (in terms of our notations)

(12) S(@ + i, &, + 0 )=5, (8, &, )+, () +5,(@)

in practice excludes any such interactions,
We will denote the integral over the {§§“ }, {f;”"} and {ﬁ)o} fields in (9) by Z,
and we will focus only on the evaluation of the @' integral:

_[ (8. . o' ]+s!{ro" L2 }32[5,0_ o, [hl'l\r ]2 ]+sz [cn' / [huv J’]]

(13  Z-= ZJd(D'e
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We shall also assume that the fluctuating scalar field changes more rapidly in
comparison with the background fields so that the latter may be considered “frozen™
in space and time, i. ¢. stationary and uniform in space. After calculating the differ-
ent terms in the action (13) and rearranging the different kinds of terms, containing
@', the following expression can be obtained:

(14) s Z, J d(b'efjdéx[w? w[aucp' J[avo'}(b[apo' J(n\,éno )+@']

¥

where a, b and c are, as expected, functions of the background fi clds (I) and &;" and
also of the perturbed gravitational field 7+

(S )ers a= (Qg” + 5““)(Ri? + RL?}&U + mz(\fg_“ + %ﬁ]

L ) B ~ a ~ A
+;( gﬂ +;k)+3)k}!q)§+3?\j3}whw(bé,

(]6) b= §;w + i;;w’
an c= 2,8, (3 +ir)(RO + RL?)+4x<§;(Jg‘° %ii}

fuv 2 Fruv {1) 3. oy 1,3
+mihYh D +ERNR O+ 20A" h, ;.

In deriving (14) we have neglected terms, higher than second order in &'. After
performing the integration by parts in {14), the partition functional integral Z can be
written in the following way:

-J’d‘x[w'h'w'i;]

(18) Z=7|dve
“In (18) 4 and B are differential operators of the kind:
(19)  A=a- b‘m-(a“b)av —a— [bap +.apb]av,
B=c-bnd,-(0,0)0,6) - [0, +5,5]0,8,.

It will be proved in the Appendix A that by a suitable gauge transformation in
respect to the space variable »

@0 9,=0,+f()

the first order derivatives in (19) can be removed and therefore 4 and B can be writ-
ten as;

21 A=d —bd,
(22) Bec-bod
Note that to the positive signature of the metric the Delambertian O is:

23) f L0
a :
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where A is the Laplacian of the space-three-manifold, embedded in a given
three-geometry. In other words, the choice of the variable r will not affect the eigen-
value spectrum of the operators 4 and B , since the background fields {and thus the
functions @, b and ¢, depending on them}) are “frozen” in space and time according
1o our previous assumption,

3. Zeta-function regularization and the resulting
scalar-gravity background field renormalization

Our main aim in this Section will be the evaluation of the in-
tegral (18). First, we make the simple transformation:

(24) o =0 -1
2

and thus (18) can be written in a more familiar way:

Aratilgag

1 1 ne
(25) e N 2 jd(p;e—mlei

g !

Ygag-1 1g24-2

=Z¢e? ¢ (det Zt)_%

Note that the transformation (24) can still be applied no matter that Aand B
are not functions, but operators,

The determinant of the differential operator Awill be calculated by applying the
well-known method of zeta-function regularization, previously developed by Hawk-
ing [20] and others [21,22]. For this purpose the following basic formulae will be
used: ;

(26) detﬁza(p|r—['£€—(—rs—)1=0:’,

ds

where

@ )= T

Is the defined in [20] generalized zeta-function and X, are the cigenvalues of the dif-
ferential operator A, s is an integer number (s>2). Since we intend to reduce our
problem to a well-known quantum-mechanical problem, we will assume that the

space-three manifold, over which the operator A , 18 defined, is the three-sphere. Of
course, the eigenvalues can alsc be found in the case of other manifolds.

In the present case we denote the eigenvalues of the operator by A by &, = EL.
This means that the operator equation
(28) AY=0
is being satisfied by an arbitrary function ¥ of the kind:
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@9 W= e f (7).

The last also means that only stationary states of (28) will be investigated, Sub-
stituting (29) into (28), the following equation for the eigenvalue functions J, is ob-
tained:

(30) A1 (r)= [—Ej i V(r, d,, §Ev)}f,,(f' )

where A is the Laplacian on the three-sphere (1. e. in spherical coordinates .9 and
o):

af . @ a
(Gh Ams—l?i A +L2 % lsing |+ s 12 —.
¥ sing g0 bt rsin” 6 dp

The function V(r, d,, gﬂ,,) can be evaluated in the short-distance limit ~—0 by
use of (15) — (17), (21), (22) and the following estimates for the gravity field [23}:

~ My 2,
{32) = B i : 8h 0 L . R{l] ~_6_L= _1- |
) N/E + axl. r2 v axkaxp r;

Keeping in mind the above assumptions, the following expression in the limit
r—0 is derived:

63 1 &, 87) = oRe, + éy (rm, + 6182) + %(3y_zx&>g)+ r%(éoﬁiéa'”% ;13-&_,0;32,

where y,, v,, v,, are constants. The function (33) may physically be interpreted as a
three-dimensional potential barrier of the kind:

B ¢ b
(34) V(r)=A1+T‘+T'+r—3;A],B],Cl,Dlareconstants
which will evidently affect the eigenvalues of the operator 4 . It may be thought as if
in the vicinity of their neck (»—0) wormholes create an effective potential barrier, in-
fluencing scalar (and other) particles, penetrating down the wormhole from the baby
universe. Since in g higher approximation the perturbed metric may involve higher

powers of L , we should keep in mind the simple fact from quantum mechanics [24],

>

that the motion of a particle in a potential field U = —%(S > 2) is restricted in a small
r

area around the coordinate center and will finally fall upon it. However, such z move-

ment is unlikely in the present case because of space-time nonlocality (Fig. 1).
Moreover, such a restricted motion would contradict current models in quan-

tum gravity, based on the assumption about infinite past and infinite future states on

different space surfaces [25]. It can be therefore concluded that a particle, falling

1
down the wormhaole will probably “sense” only the lower order terms and (~ B and ~—
3 r r
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Fig. 1. Particle motion down the wormhole from an initial state to
a final state and-thus not crossing the intermediate state of the
baby universe {25]

of the potential barrier. However, the following ques-
tion inevitably arises: if the fluctuating metric involves

. 1 .
higher order terms of —, how can this process of

0
“sensing” happen? A suggestion is made in this paper
that in a more realistic model the background scalar
and gravitational fields continuously evolve in a self-consistent manner and thus
changing the coefficients 4,, B, C,, D,, unlike in our simplified model. By means of
a such self-regulating mechanism the potential terms are adjusted in such a way so

that falling particies are influenced only by lower order potential terms in ! Thatis
»

r

why we shall neglect terms in the fluctuating metric with higher powers than 0{—12—-}

Further, we present the eigenvalue function f,(r) as:

39) £r)= 1.0 ) B, 0)

where Y, (6, ¢) are the usual spherical functions. We have to keep in mind also that

- - ii+1
in a spherically symmetric field an additional “centrifugal” term ( 3 ) %. appears
r

in the potential as a result of moment conservation and level degeneracy [24]. From
{30), (31}, (33) and (35) the following equation for x,(7} is obtained:

(36) 1) 2 “"‘"(’){E: 4 —i-%‘—ﬂ]xn =0,

a‘r2 r dr o 3 2
where
(37) A =R +§(}ﬂz + GMﬁﬁ)yl,
(38) B =382
(39 C =&.8gy

and / can be regarded as the conserved momentum of the baby universe. In terms of
the new variables

(40) p=2r|E; -4,

(41) T e
24, -E] ’
(42) ¢, +II+1)=1 (1 +1)

58



equation (36) can be written as:

- 50,280 1 s 1], 6).0

dp f’dp 49

It is reasonable to search out for a solution, which is finite at p—0 {of the form

L
P p"} and which is vanishingly small at p— {of the form X, ~e? } [24]. Both

assumptions are physically reasonable, since all fields decay at infinity and it is useless
to deal with infinite solutions at p—0. Therefore, the function y_{p) can be written as:

2
(a4) 1,(p)= € *p" wlp)-
Substituting (44) into (43}, we derive the equation
(45) pw" +{2, +2-p}w +{n -1 ~ 1w =0,

where the prime denotes the derivative in respect to the variable p, Equation (45) has
2 well-known solution [24]:

(46) w(p)= F-n, +1, +1,21,+2,p),

where F is the so called degenerate hypergeometric function:

4 ) L dut afo+1) 2
(47) Fla, v, 2)= _[ "(1- z) Ftdr = 1+71‘ e TR

The contour C ¢omes from infinity {(when Re t— —o0 }, goes to infinity (when
Re t— +0) and has poles at t=0 and ¢==z, It is evident from (47) that the solution
F (a., v, 2) is vanishing at infinity when a<0, In the present case a=-n,+/ +1 and so0
the following condition has to be fulfilled:

(48) nzi+l

This means that the eigenvalue levcls are resticted from below. From (37}, (38)
and (41) the eigenvalue spectrum X, = E? can easily be found:

3y 2M>o
2 3
4n|
where m, is the renormalized mass due to the action of the background gravitational
field:

L {0)
(50) m =m + 2(1Rw :

(49) A =E°= 2(m +6m)

It can easily be checked that the spectrum (49) is always positive in the limiting

2
"2 my

case —; Y. «1. In the opposite case (62. <1) E, can be positive if the inequality
m; (Do
2 Y2
(51) nl >>w

2
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is satisfied. If we assume that ¥, and A are positive constants, this may really happen,
since according to (48) the eigenvalue levels are restricted from below and the inves-
2

n
tigated case —% <1 requires ad; to be great. We will also assume that the posi-
6D

tive (and thus continuous) eigenvalue spectrum ranges from zero to infinity, From
(39), (42), (51} and (48) it is evident that such an assumption is justifiable especially
for small ! and small constants & or B.

Finally, the generalized zeta-function (27) can be calculated, replacing the sum
over n, by a continuous integration (since the spectrum is continuous) and multiply-

ing each A, = E’ from (49) by n? since each eigenvalue level with a main quantum

2 -l
(level) number n is 3 (2/+ 1) = n* degenerate:
=0

- T 24 -4 _m 2l Ly 5 22 3721&’(23 5
(52) Q(s)— !dnlnllﬂl_—jdnln![z(m] +67L(IJa)yi - o= ] :
By making the substitutions
I ~
53) K=y (nf + 6102
(54) fe 2t
4

the integral (52} can be written as:

2{s+1}

(55) &)= —f an——.

K ; 7 4
Ri__
[ K

The last integral is of well-known type and can be evaluated by means of the
following formulae [26]:

(56) r m}( i _F(I—ZEJr[a_};_B)

wam?) A2 )

[t

where I is the gamma-function I‘(a) = f € *x°"'dx. We obtain the following expres-
1]
sions for the generalized zeta-function £{(s) and its first derivative:

(57) ¢(s)= ;L _@i@ =L, 1(s).
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g

0. e L) o)

X

where I(s) denotes the term inside the brackets in (57). The following standard ex-
pressions have also been used:;

I'(z)= F(z)‘P(z); r (z'-i- I)E aI'(z),

59 T e
{(59) ¥(n+1) 1+2+.”+n n P+ : +¥(z).
¥(z) is the Oiler function and y — the Oiler constant:
(60) y = 1;,,1[1 Ity n) =0,5772157.
- 70 2 n

The final result for the partition functional integral (25} with account of (26),
(52) and (58)is : ;

\ Loz | 1ao._
61 Z=z el 2[@@(&)
a=0

Ad3

4. Discussion

The physical meaning of eq. (61} will be more easily revealed
if we rewrite it into another way:

(62) z= [ ab, exp(%fi‘zﬁ'l _}4&22-2]
wow (fao{L (& 8)+ 1, (&7 ,))

where we will calt I, (é;"’, CADO) a renormalized (nonpolynomial) Lagrangian:

3
& o ot ai T
' . Lmn(gﬂ'__’q)o)_z _1’1 }n]2+6llf3§) .

The physical essence of expression (63) in that the interaction between the fluc-
tuating second-order gravitational and scalar fields leads to an effective renormal-
ization of the background fields with an additional nonpolynomial non-local term.
The numerical constant & in the renormalization term (63) and (61) equals to
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(64) §— _2.__2{1;{2) (0 }
2r(c) 2 ©)
~and has an important physical meaning. Remember that 8 has appeared in the pro-

cess in the evaluation of the zeta-function integrals (52), (55), originally derived from
equation (65):

© WO £,0)=[F+ V(695 8]

with a potential barrier V(r, (f)o, gg‘*) (33), reflecting the properties of short distance

physics (r—>0) and of the background fields. That is why to a certain extent & may be
viewed as a coupling constant between short-distance physics and background fields.
Note also that the self-coupling constant A of the scalar field plays an important role
in the renormalization term (63) and thus shows that the initial “nonlinear” features
of the scalar field are an important prerequisite for this result. Unhappily, at the
present moment it would be premature to relate the constant or its numerical value
to any concrete physical observable. In this aspect it would be interesting to check
whether a similar coupling constant will appear when working out in a higher order
approximation of the fluctuating gravitational field. Unfortunately, it has not been

3

) were in-
-

possible to find an exact solution of (65), when higher order terms ~ O( 1
cluded. Then it may probably happen that the additional term (63} is not unique and
thus will depend on the approximation, assumed in advance. That is why the result
in this paper confirms, to a certain extent, J. Preskill’s conclusion in ref. [16] about
quantum indeterminacy of our predictions, as far as short-distance-physics is con-
cerned: “It is because the renormalization of G {the Newton’s gravitational constant)
is dominated by nonuniversal short-distance effects that we are unable in the end to
make precise predictions about the values of other constants.”

However, in Section 3 of this paper it was emphasized that quantum inde-
terminacy will not be so clearly manifested because only the lowest order terms

1 1
~ 0 [:J and ~ 0(7) would probably be the most dominant ones, when investigat-
i

ing the motion of particles through the wormhole: In reference to the problem about
coherence loss it is worth reminding that it may be established only by a distant ob-
server. In the present case, however, we have not solved the self-consistent problem
about scalar and gravitational field evolution and that is why we do not know wheth-
er the additional renormalization term will persist or die off at large distances. In
other words, although the additional renormalization term (63) resembles in a sense
the additional term (1), here we cannot affirm that global effects due to wormholes
are surely induced. However, such a possibility about the existence of global effects
should not be excluded until the self-consistent problem about scalar and gravita-
tional field evolution is solved. The latter means that a system of two nonlinear dif-
ferential equations should be solved. It is known that if a stable solution (or a confi-
guration) is assumed to exist, then such a solution can be found in the framework of
the so-called self-organization theory [27]. As a common rule in this theory, space
nonuniform distribution of a given physical variable can give a greater variety of sce-
narios for its evelution.
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It should be noted also that the correct treatment of the partition functional in-
tegral (9) should include some gauge-fixing terms so that (9) would be invariant un-
der arbitrary gauge transformations of the fluctuating scalar and gravitational fields
[28—30]. However, we are interested only in gravitational fields, which are asymptot-

ically flat at infinity (hm, = G)) — an assumption, frequently applied in wormhole

theory. Also, we have removed all fist-order derivatives in the operators4 and B((19),
also Appendix A), which can break the gauge invariance in respect to the fluctuating
scalar field. Moreover, it is unlikely that the additional term (63) of background
fields may appear as a consequence of the introduction of gauge-fixing terms and
Faddeev-Popov'determinants [28], depending on fluctuating field variables and not
on the background field variables.

As a final result of this paper, it may be concluded that wormholes (and fluctu-
ating topologies in general) may possibly “amplify” and change the surrounding sca-
lar and gravitational fields. This can be thought as a quantum gravity and topology
effect and is worth further investigating it, despite our present ignorance about the
essence of this phenomena,

5. Appendix A

It shall be proved in this appendix that after performing a
gauge {cocerdinate) transformation

(66) 8, =0,+f{r)

the operators 4 and B can be written as second order operators only and in terms of
the new space variable #* in (21}, (22);

{67) A=d-bO; B=c-bo d,.

in other words, in accordance with the formulas {19)

(68) A=a-bo-(0,b), =a-[b3, +(3,5)p..
B=c—b0d, (0,8, )0,6)=c- [bap +(0,6))(2,9.)

we will have to establish the validity of the following operator equality:

(69) [bap ¥ (aub)]a; =55,

which has to be satisfied for any gauge transformation of the kind (66). After substi-
tuting (66) into (69) we obtain

(79) 60,0, +(0,6, =b/(2, + F(r))o, +7 ()
In (70} and (69) &'is a function of the new variable 7. However, according to the

equivalence principle in gravity theory the relative order dependence 4, = 0(1) in

I
the function

b=gr b
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should hold in any coordinate system, That is why it can be written:

@) b(r')=br)= O[i] ~=i = const

and therefore the first terms on the left and the right side of (70) cancel cac.h other.
Furthermore, let us assume that (70) acts on an arbitrary (but known) function g(»).
As a result we derive:

(12) [(ap b)- bf](avg) 2 [b(au Syt ]g
If we denote

é .
(73) & _ 4()

2.

and take into account the estimates:
- [ L4 A
(74) Hry=—ob=—

finally we derive the following differential equation for the function f{iri

(75) ii,rﬁm%")ﬁu%ﬂ:o

rdro

Qur statement will be proved if we establish that a solution of this differential
equation exists for-an arbitrary function f{r}, However, the differential equation {75)
is of the type:

(76) % = F(fr)

and from the theory it is well-known that a solution of this egquation always exists.
This precludes the proof of the statement,
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Penopmasnidzanus Ha (GOHOBY [0JIETA

B G/IM3KaTa OKOJIHOCT Ha TOMOJIOTHYECKH
IPOCTPAHCTBEHO-BPEMEBH CTPYKTYPH

(oT THDI ,,pBYKH")

BCJIC/ICTBHE B3aMMOJEHCTBUE HA CKaJlapHH

M TPaBUTAIMCHHY NOJIETA OT BTOPH NOPAIBK

Bozdan Humumpos

{PeaoMe)

B paMKETe H3 TEOpHATAa 3a NPOCTPAHCTBEHO-BpPEMEBUTE
CTPYKTYpH (OT THII ,,p’BUKH") B Hali-paHHaTa Boe/icHa € AOKa3aHO, Ue B3auMOAeHCT-
BEETO Ha (UIYKTYBIHOHHM CKAlAPHH H TDaZBHTAIlHOHHH ITOJIETAa OT BTOPH NOPAAEK
BOAH AC peHOpMaiu3auus Ha AclicTBHEeTO Ha GOHOBHTE NoOHETa ¢ AONBIHHTEACH
YJIEH OT HeNOJAMEOMHUaNeH TAM, IIpriIoxKeH € METOADBT HA A3eTa-QyHKUNA PETYIIADH-
3ZIUA 33 H3YHACIABAHETO HA HEIIOJIHHOMMAIIHAS HIIEH, 32aBHCEN] CHUIECTBEHO OT He-
AAHeiHUTE CBOKCTBRA Ha ckajlaproTo node (Adireopas).
IlpeajioxeHa e (uinyecka HHTCPIPETAHEA, CBIJIACHC KOATO CTPYKTYDHTE
»PBUKH® cB3gaBaT edieKTHBEH KBARTOBO-MEXaHHYeH HOTEHIAaIIeH Bapuep, BB3-
JelfcTBalll PhpXy YaCTALMTE, IPDEMHHABALIHN Ipe3 PBUKATE,

5 ASPOXOCMEYECKE ¥ICIEIBANES. .., T- 12 65





