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Introduction

The phenomenon of continuous oscillation excitation with
amplitude from discrete value set of possible stationary amplitudes [1] will be ana-
lyzed numerically on the basis of a general model — a pendulum under the inhomo-
geneous action of external HF periodic force,

In fact, we will discuss a class of systems with specific excitation — adaptive
kick-excited systems. The kick-excitation can be represented by a short, as compared
with the main period of oscillations, action of an external sine force,

The case discussed in the paper is rather a self-affined and quantitatively simi-
lar to the well-known problem examined by Fermi [2-4]. As an explanation for the
origin of cosmic rays, Fermi proposed a mechanism for charged particles to acceler-
ate by collisions with moving magnetic field structures. A great number of papers
deals with the simplest model case — the so0-called model of Fermi-Past-Ulam [5-
12]. 1n the setup of Fermi-Past-Ulam scattering problem a ball is made to fly and
impact dissipatively on a signal sinusoidally vibrating surface under the influence of
the gravitational acceleration, which hence reverses the flight, The amplitude of the
surface vibration of the cosine type and the coefficient of restitution between the ball
and the surface control the ball dynamics.

In the recent years, the principle ability of using the Fermi mechanism for
boosting space rockets in the gravitation field of the planets and stars has been dis-
cussed in the literature, This is the model of a so-called “gravitational engine”, ac-
celerating particles or bodies. The part of the vibrating plate may be played, for in-
stance, by the field of a rotating binary star.
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Fig. I. Illustration of the system under consid-
eration — a pendulum under the inhomoge-
neocus action of an externzl periodic force

Fosin vt

Similar phenomena occur in other subclasses of the class of kick-excited sys-
tems, e. g. in periodically kicked hard oscillators, ice-structure interaction model,
kicked rotators, driven impact oscillators [3, 13-20].

At present the pendulum is also a widely used basic paradigm for analysis, both
theoretical and experimental, of phenomena of excitation of complex, irregular and
chaotic oscillations [3-20]. Extensive numerical and analog simulations have shown
that this simple, low dimensional system exhibits complex behaviour including fre-
quency and phase locking, intermittency and fractal basin boundaries. :

The paper deals with common features in the behaviour of pendulum with in-
variable parameters in new conditions, namely the pendulum undergoes the action
of continuous periodical external constrained force, which is inhomogeneous with
respect to the coordinates of its motion.

Fig. 1 presents a schematic diagram of the pendulum system under consider-
ation. The deviaticn of the pendulum from the lower equilibrium position is denoted
by x. The external harmonic high-frequency force F=F, sinvt, where F =const, acts
in a Jimit zone [-d, d] of the trajectory of motion of the pendulum, which is symmet-
rically located around the lower equilibrium point, This is the meaning of the notion
“inhomogeneous action” related to the trajectory of motion of the pendulum, or the
same expressed by the notion “nonlinear harmonic force” which should be under-
stood as a nonlinear dependence of its amplitude on the coordinate of motion of the
driving system — the pendulum. The direction of action of the external force is par-
allel to the direction of motion of the pendulum and is periodically reversed. When,
initially, the pendulum is turned aside from the equilibrium position outside the zone
[-d. d] and is released to oscillate, it periodically passes through the zone [-4, d] and
is subject to the action of the external force F=F, sinvt. At these conditions, a sta-
tionary mode of pendulum oscillation can be esta%lished with & quasi-constant am-
plitude, within one of the hatched areas of attraction in Fig. 1. The particular sta-
tionary amplitude of pendulum motion is determined by the initial deviation and the
initial speed (i, e, by the initial conditions), Different modes of motions are possible
for the pendulum, depending on the initial conditions: it either catches up with one
of the possible stationary orbits, or its motion is quickly damped. This is the heuristic
value of the phenomenon — the presence of a possible discrete set of stationary
amplitudes, i. e. a specific “quantization” of the pendulum motion by intensity as a
parameter. At the same time, there exist “forbidden” zones of initial conditions, for
which the motion is only a damped one. Obviously, there is a phenomenon of “quan-
tized” oscillation excitation, a “quantization” of the dynamic states in a macro sys-
tem. The excitation of one ampiitude or another depends on the initial conditions, at
consiant other parameters and conditions. We consider that the pendulum in this
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case is a self-oscillating system with high-frequency source of power supply (in con-
trast to the common perception that the self-oscillating systems should have a d. c.
source of energy [21]). In quantum mechanics, the quantization (the notion of quan-
ta, photons, phonons, gravitons) is postulated, and in the Theory of Relativity quan-
tization is not derived by geometric considerations. At.the phenemenon found, the
“quantization” of transition of energy in portions directly follows from the mecha-
nism of the processes and is formally mathematically defined. The quasiharmonic
oscillator obeys the classical laws to a greater extent than any other systems. A num-
ber of problems, related to quasiharmonic oscillators, have the same solution in clas-
sical and quantum mechanics.

This paper presents a general picture of the motion of the pendulum under in-
homogeneous excitation at different conditions. It is demonstrated that, due to the
character of excitation (adaptive external kicking action}, maintaining quasi-period-
ical and quasi-regular oscillations is possible. Bifurcation characteristics are present-
ed and problems of excitation in the system of irregular and chaotic oscillations are
discussed, :

Numerical experiment of exciting “quantized”
pendulum oscillations

A fascinating problem in modern dynamics is the origin of
qualitative changes in the behaviour of nonlinear physical systems on very long time
scales and the resulting low-frequency noise.

In this section we report a study of “quantized” oscillations excitation and bi-
furcation to irregular regimes in numerical simulations of the damped driven pendu-
lum emphasizing the role of the phases of attraction for different stable states of the
dynamijcal system.

Generally, almost periodic oscillations are excited in the system under consid-
eration, due to the nature of excitation (the external force acts inhomogeneously:
kicking excitation},

The inhomogeneously a. ¢. driven, damped pendulum system is given by the
following set of three first order autonomous differential equasions

x =y,
(4] p - —2Bx —sinx + E(x)F}, sin z,
= A,

: : 4, ] :
where x is the pendulum’s angle of elevation, y = — its angular velocity; the driven
dr

torque is & sinusoidal torque with amplitude F,, frequency v, and phase z - vt + ¢, ©
is the initial phase; [3 is the decrement of damping in the system; the dot denotes an
operation of differentiation by the dimensionless time =01, where @ is the natural
resonance frequency of the pendulum for oscillation with a disappearing smalil am-
plitude, the frequency of the external periodic source is in units of ®, the v>>1, case
is considered.

The function &{x), which derermined the nonlinearity of the external periodic
force related to the coordinate of the excited system is accepted to be expressed as



1, at |x| <d,
2) a(x) r {O,at [x| >d,

where the parameter d thus defines a symmetrical zone of action in the area of the
lower equilibrium position, d=<<1.

The Equations (1} and (2) imply that an almost symmetric solution is an almest
pertodic sclution with a period T which is an odd-integer multiple of the driven

period 2%
W

7=+, n=1,23, ..

A fourth-order Runge — Kutta routine was employed to compute numerical
solutions of Egs. (1}. All calculations were carried out in double precision arithmetic.
The integration time step generaly was chosen to be 0,001 of the natural period. For
each cycle of computations the discarding points were determined to be 500 thou-
sand and calculating points to be 250 thousand. Comparison of the anaiytic and
computed solutions to the linearized form of Egs. (1} indicated that this technigue
gave numerical precision of seven decimal digits over one natural cycle,

Equations (1) constitute a flow in 4 three-dimensional phase space with dynam-
ical variables x, y=x and the drive phase 2. The control parameters F, and 3 and the

initial conditions x,and y, = —% determine the pendulum’s motion. Based on the
dr

physical mechanism of excitation, which will be described in greater detail below and
which is associated with a frequency lock and phase synchronization, the frequency
v of the external driving force at the experiment should be constant. As it will be
made clear below, the initial phase ¢ plays a significant role at the adaptive mainte-
nance of the pendulum oscillations. At the same time, we take into consideration
that at the inftial start of the pendulum the phase ¢ has an equally probable value in
the range from 0 to 2%, which means that the pendulum enters the action zone [-d, 4]
of the external force at an equally probable (arbitrary) value of the initial phase .
Once again, the meaning of the initial phase @ (its role will be explained below)
should be pointed out. The phase ¢ determines the state of the external driving force
at the time when the pendulum enters the action zone [-d, d]. Therefore, the phase ¢
is a varying value from period to period and it plays a dominating role at the adap-
tive self-maintenance of the pendulum oscillations. In all calculations the initial val-
ue of the initial phase ¢ is chosen to be zero; ¢ =@,=0. After the transition process is
completed, a regime of automatic adaptive self-adjustment of the initial phase is es-
tablished, around a value of @, which is characteristic for any regime and the corre-
sponding set of parameters,

We have obtained computer solutions of Fgs. (1) and analyzed the resulting
data using three diagnostic tools: time series of the angular x and the angular veloc-
ity &, phase-plane plots (x vs. x) and bifurcation characteristics {the oscillations am-
plitude vs. the controlled parameters). The numerical selutions are cbtained for F
values in the range 0,1<F <500, for [ values of the damping in the range
0,0001<8<0,5, for d values in the range 0,001<d<0,05, for fixed values of the driving
frequency wv=51,0; 97.0; .. and always starting from the initial conditions

dx, : el : ;
Vo =—= =0, x=vary. In all cases in order to eliminate transients, the solution were
&
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Fig. 2. Time series of the coordinates x{q} and the velocity x(5) in steady-state stationary regime of
motion of the pendulum at the fellowing initial conditions: x =1,5, 1,35, 1,05 and 0,25. The values of
the rest unchanging parameters are: y =0, F =2, v=51, =0, 01, d—(} 025

run through at least 1000 periods of the driving force before actual data taking was
started,

Below, we present the main results of the numerical experiment at the following
values of the parameters: f=0,01, v=51,0, F,=2,0, d=0,025, y, =0, x =vary.

Figs. 2 and 3 show the time series and the combined phase portralts of a station-
ary steady-state pendulum motion at four different initial conditions: x,=0,25; 1,05;
1,35; 1,5. Figure 2a shows the time series of the coordinate x and Fig. ﬁb shows the
time series of the angular velocity X. Both in Fig. 2b and Fig. 3 the abrupt changes of
the velocity of pendulum motion in the narrow driving zone of the external force are
clearly distinguished. By Fig. 2 and Fig. 3 we have sought to illustrate different pos-
sible regimes and cases. At an initial condition of x,=1,5, periodic oscillations are
excited, very close to the harmonic ones, with a stationary amplitude of ~ 1,45. The
initial condition of x_=1,05 determines a stationary amplitude of ~ 1,1. In both cases
the value of the initial condition is chosen very close to the possible (“allowed”} am-
plitude values. The area of attracting related to the initial conditions for any one of
the possible stationary amplitudes (see the hatched areas in Fig. 1) varies from 15%
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Fig. 3. Phase portraits of the dynamic
state of the pendulum in steady-state
stationary motion regime for the same
initial conditions and at the same val-
ues of the remaining parameters, as in
Fig. 2

Fig. 4. Time series of the coordinate
(a} and the velocity (b) at the transi-
tion process of establishing stationary
motion of the pendulum at the same
values of the rest parameters, as in
Fig. 2
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Fig. 5. Phase portraits of the dynamic state of the pendulum at the transition process of establishing
stelionary motion of the pendulum at the same values of the rest parameters, as in Fig. 2

ta 7%, with an increase of the absolute values of x, from 0,25 ta 1,5, respectively.
When the initial condition is set to be between thcse areas of attracting, different
modes are possible — either the oscillations are quickly damped, or the motion is
“trapped” and stabilized on one of the possible lower {“allowed”) orbits. The latter
possibility is illustrated in Fig. 4 and Fig. 5, which present the transition processes of
establishing a stationary motion for the same 4 initial conditions as those spec:f ed
related to Fig. 2 and Fig. 3, At an initial condition of x_ =1,35 (clearly seen in Fig. 5)
— a value located between the “allowed” values of the stationary amplitudes ~ 1,1
and ~ 1,45, the pendulum becomes “heavier” and passes through the possible sta-
tionary orbit with an amplitude of ~ 1,1, then is “trapped” on an orbit with ampli-
tude ~0,75. Another feature of the presented data of the pendulum behaviour is that
while its motion around one of the orbits, with an amplitude of ~ 1,45 in this case, is
sufficiently close by its nature to the harmoni principle of motion, at the moticn
around other orbits (with lower values in this case) an amplitude — two and ampli-
tude — three modulated motion may be observed. This is especially characteristic in
the case of the orbit with amplitude ~0,25, which is an amplitude — three motion (see
Fig. 3 and Fig. 4).

As a whole, Figs. 2, 3, 4, and 5 illustrate the most important common features
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Fig. 6. Bifurcation characteristic repersenting a dependence of the amplitude of the oscillation of the
pendulum on the control parameter — the amplitude of the externzl driving high-frequency harmonic
force at the following parameter values: x =1.05, y =0, v=51, B=0,01, d=0,025, F ~vary

of the system under consideration — discretization (“quantization®} of the possible
stable motions by the parameter of intensity, at which the particular amplitude of
oscillation is determined by the initial conditions. The occurrence of a specific series
of possible stable stationary amplitudes is associated with the condition v>>1 and is
defined by the condition of locking of the phase ¢ and phase synchronization be-
tween the motion of the pendulum and the external periodic force. The physical
mechanism of phase adaptivity and its role for the maintenance of unchanging oscit-
lations of the pendulum at a considerable change of a number of parameters and
conditions will be clarified below and in the subsequent Sections.

Fig, 6 shows a bifurcation characteristic that presents, in this case, a depen-
dence of one of the possible steady-state amplitudes of pendulum oscillations {(~1,1}
on a control parameter which in the case is the value of the amplitude of the external
driving high-frequency harmonic force. The presence of a threshold value for the
amplitude of the driving force {(~1,1) is seen, and for values above this threshold a
steady-state stationary regime of pendulum oscillations with amplitude ~1,1 is real-
ized. In the range of values of F~[1,1, 2,8], i. e. when the amplitude of the external
excitation force is changed by almost 200%, the amphtude of pendulum oscillations
remains practically unchanged and the motion is period — 1.

This property is the second very important principle of the system under con-
sideration — the independence of the steady-state stationary amplitude of pendulum
oscillation of the change of the amplitude of the external high-frequency driving
force in a wide range.

At a value of the excitation amplitude of F~2,8, a bifurcation of tripling the pe-
ried occurs. Amplitude — three oscillations exist up to values of F~3,26, when, as a
result of 2 new complicated bifurcation, complex irregular OSCIIIaHOﬂS occur. This
bifurcation is preceded by a return to a quasi-periodic determinate regime, followed
by a sharp transition from quasi-periodic regime to an irregular one (such sudden
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Fig, 7. Phase portraits of the motion in the system of Fig. ] at (a) F,=2,775, (b) F =23, (c} F =3,2595,
{d) F,=3,26 and the same values for the rest parameters, as for Fig. 2; x,=1,05

qualitative changes are usually called crises). The three specific portions of the bi-
furcation characteristic are also illustrated in Figs. 7, 8, and 9. At a value of F =2775
the oscillations are almost harmonic (see Fig. 7a). At a minor change of the value of
F, amplitude — three oscillations are established as a result of bifurcation {see Fig.
73). These oscillations undergo some increase, without changing their nature, up to
a value of F=3,2595 (see Fig. 7c). At further minor increase of the value of the con-
trol parameter F, a new bifurcation occurs and the oscillations in the system become
strongly irregular (see Fig. 7d).

The bifurcation characteristics are of a similar nature for the remaining possi-
ble stationary amplitudes of pendulum motion in the “allowed” spectrum of Ampli-
tudes of oscillating motion.

Figs. 8 and 9 represent an illustration of the irregular oscillations of the pendu-
lum at different values of the parameter F, and the parameter B. which represent the
decrement of damping of the pendulum. lgig. 9 gives an idea of pendulum behaviour
in extreme conditions — hyperloading and strong external driving.

Fig. 10 is another bifurcation characteristic, when the value of the damping dec-
rement {3 is chosen as a control parameter. At small values of [ the motion in the
system has a strongly irregular nature. With the increase of the value of , as a result
of bifurcations, steady-state stationary quasi-harmonic pendulum oscillations are es-
tablished, which exist over the range of values of $~[0,007, 0,02]. At the set value of

13



! x
T
N
1Ll | T
R '3&0' ‘2 13é0| 7 I4-CI}0I = I4-%0
lx 2 ]
-
0 WWMNWWW
¥ H‘ |
_-1§ i v
1: |
i
) - :
i {.3(')0l o l?.'iéﬂl i [4(;0‘ a1 I4é0_—_

Fig. 8. Time series of the coordinate x (4} and angular velocity X {5} and phase portrait (¢} of the 1r}eg-
ular motion in the system of Fig. 1 at (I} F,=5,190, (11}, F =5,185, {111} F, =6,480 and (IV} F,=6,51 and
the same values for the rest parameters, as for Fig. 2, x— 1 05

14



15




2.5
= . c
- X
3
ol
i
o — T
215 TR T A T s
x b
2 rr\ ’h
f |
T
P o e e T ] L (P ] (LT R T
300 350 400 450
|
A . a
1= q
05
A4
i
=l T
R ) [ e e ) [ e R e ) L e R LI |
wi &
2,54
0,0
251 :
3 P ] 8 =] 29 i ) il i i P (= P B2 L
300 350 400 450
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the amplitude F,=2,0, for values of $>0,02, the pendulum oscillations mainly degen-

erate into faster or slower damped ones.
Fig. 11 gives a general idea of the nature of the pendulum oscillations on the
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Fig. 10. Bifurcation characteristic representing the dependence of the amplitude of the pendulum os-
cillations on the value of the damping decrement P at the following parameter values: x,=1,05, y,=0,
v=31, d=0,025, F,=2, f=vary

0,03

0,02

Fig. 11. Ilustration on the nature of motion in the system of Fig. 1 in the plane of main parameters —
damping decrement (3 vrs amplitude of the external driving force F,. The hatched area correspands to
steady-state stationary oscillations; the dots denote the area of complicated irregular pendulum oscil-
lations

plane of basic parameters — the state diagram is given as a function of both the ex-
ternal driving amplitude F, and the damping paraméter B. The continuous line and
the hatching define the area of parameters that ensure stationary oscillations, For
values of parameters outside this area, the oscillations have strongly irregular nature,

The areas of parameter values corresponding to an irregular motion of the pen-
dulum (see Fig. 6 at F>3,26 and Fig. 11 — the space filled with dots) require a very
extensive and detailed investigation. As it was already pointed out, the system under
consideration in Fig. 1 is relative by a number of attributes to the Fermi’s problem in
the setup of Fermi — Ulam, represented by a vibrating surface, from which an elastic
ball is bouncing freely and is falling back by the gravitational effect. In spite of this,
there are substantial differences in the nature of the irregular motion in the two sys-
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tems. While in the model of Fermi — Ulam the regimes of irregular motion are de-
scribed by the typical principles of the determiristic chaos (e. g. fractality, well
known scenarios of transition to chaoctic oscillations, etc.}, our preliminary studies
of the irregular motion in the system in Fig. 1, described by Eqgs. (1}, have shown the
following. Two main mechanisms are “fighting” in the system under consideration —
from the one hand, the adaptive mechanism based on phase locking and phase syn-
chronization and tending to establish determinate quasi-periodic oscillations, and,
on the other hand, a complex mechanism of occurrence of instability. The adaptive
mechanism “overcomes” in the area of determinate oscillations, and the pendulum
motion may be too complicated in the area after the critical bifurcation point. The
behavicur of the inhomogeneously forced pendulum is richer in form than shown by
e. g. the logistic map {coexistance of different periodic motions, “intermittency” be-
tween small bounded and large attractors, combined rotational and oscﬂlatmg me-
tions etc.), but typical properties like period — doubling route to chaos, existence of
periodic windows, crises, intermitiency, have been observed aiso. in our numerical
experiments. In the last 15 years or so, much has been written on “chaos” and
“strange attractors” (irregular behaviour).of the systems of “pendulum type”, see, for
example, [22, 23]. However, the complex behaviour of the system under consider-
ation defies adequate formalization in accordance with the settings known from the
literature. The pendulum trajectories can be bounded and unbounded, the pendulum
can have steady-state behavicur that is non an equilibrium point, not periodic, and
not quasiperiodic.

When the amplitude of the external driving force F, is a control parameter (scc
Fig. €) the following common principles are observed. At a comparatively small in-
crease of F after the critical bifurcation point (F, >3), a motion with stovhastic char-
acter appears {the maximal dmplacement time series obtained by sampling the pen-
dulum displacement once per cycle is selfaffined and quantatively similar to brown-
ian motion). There only exist narrow windows with period — 3, period — 7, period —
14. A characteristic atfracting set in the phase space is missing, The eruptive insta-
bility, which in other systems leads to the appearance of a strange atiractor, only
breaks the condition of maintenance of determinate quasi-periodic oscillations in the
system under consideration and leads to a breakdown of the synchronous input of
energy in the system. The latter is expressed in an equally probable manifestation of
wide spectra of values of the external “kick” (from “the weakest” to “the strongest”
influence of the external driving force), therefore the describing point can with equal
probability be located in any point of the phase space. The character of the motion
substantially depends on the value of the damping decrement B. At small values of B
there is a mature random process. When the value of 3 is increased, noticeable frac-
tal structures are possible to appear in the phase space, In some cases, the chaotic
motion abruptly terminates, only to resume after some “laminar time”. At the same
time, both for values of the amplitude F, slightly above the critical bifurcation value
{(F,>3) and at significant values of F (¥ >10), there exist areas in which the pendu-
lum oscillations generally have a dampmg character. The time constant of dampmg
depends on the values of the parameters B and £, its value significantly increasing
with the value of | - -

Theoretical studies and experiments on the externally forced pendulum [24]
showed that chaotic oscillations of the pendulum are cbtained after the breaking of
symmetry of escillations. At the same time, in the system under consideration of a
pendulum under an inhomogeneous external action breaking the symmetry oscilla-
tions is, on the contrary, a necessary component of the adaptive mechanism for
maintaining determinate oscillations. With the increase of the value of the parame-
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Fig. 12. Bifurcation characteristic representing the dependence of the amplitude of oscillations of a
“linear” pendulum on the amplitude of the external driving high-frequency harmonic force at the fol-
lowing parameter values: x,=1,05, ¥o=0, v=31, B=0,01, 4=0,025 and F,=vary

ter F, the irregular oscillations of the pendulum are most often described by a “wan-
dering” of their amplitude, which is corresponding to a strange attractor (either cha-
otic or nonchaotic}. Strange nonchaotic attractors seem to be characteristic for qua-
si-periodically forced systems, such as the system under consideration.

The inhomogeneously shaken damped pendulum under consideration has a set
of potential wells, It is a nonlinear system which exhibits subharmonic and chaotic
behaviour. At relatively small driving forces, the system performes periodic oscilla-
tions in one of the potential wells. At increased driving forces the motion is “blurred”
and simultaneously “fills” the other wells, which leads to chaos at given values of the
parameter F,. For other values of the parameter F, the describing point “wanders”,
vaguely drifts through all wells and the state is prechaotic due to the stabilizing ef-
fect of the adaptive mechanism of phase lock and phase synchronization. In the pro-
cess of “blurring” around the potential wells the oscillations in the case under con-
sideration are mainly “turned around” the first, deepest potential well in the vicinity
of x~{0,25, which has stronger attracting adaptive properties due to the presence of
conditions for nonsymmetric amplitude — three modulated oscillaticns.

It is interesting to compare the data stated above with the case of a “linear” pen-
dulum. In this case, the function sin x is substituted by x in the system of equations

1).

Fig. 12 shows a bifurcation characteristic, which in this case is a dependence of
one of the steady-state stationary amplitudes of oscillation of the “linear” pendulum
on the value of the amplitude of the external driving high-frequency harmonic force
F. By comparing it with the bifurcation characteristic in Fig. 6, we can note the fol-
lowing. While in the nonlinear case there is a clearly expressed threshold by value of
the amplitude F, (F,~1,1 in Fig. 6}, over which stationary steady-state oscillations
with unchanging amplitude are excited, in the linear case (Fig. 12) there is a portion
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of values of the control parameter 0,5<F.<1,8, for which a smooth increase of the
amphtude of oscillation in the system is c%aractenstlc For values F >1,8 the char-
acteristic reaches a relatively flat section, but nevertheless the amplltude of oscilla-
tion of the “linear” pendulum obviously depends on the value of F,,. At the rfonlinear
pendulum (Fig. 6), in a wide area of values of F, (1,1<F <2,8) the amplitnde of its
oscillations is practically fully independent of the 2 amphtude of the external force
(the external driving amplitude may vary up to 200%, at which the oscillating pro-
cess remains unchanging). The adaptive mechanism of self-adjustment acts less
strongly in the case of a “linear” pendulum. This is obvious, since the absence of
nonlinearity precludes the action of the modulation-parametric mechanism of ener-
gy input into the oscillation process, characteristic for the nonlinear case. Continu-
ing with the cornparison, it is seen that in the case of a “linear” pendulum the multi-
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Fig. 13. Bifurcation characteristic representing the dependence of the amplitude of oscillations of a
“linear” pendulum on the amplitude of the external driving high-frequency harmonic force at p=0,09
{a}, B=0,1 (b} and B=0,225 (¢} and the following values of the rest parameters: x,=0,75 {a and b} and
x,=~1,05 (¢), y,=0, v=51, d=0,025, F =vary

amphtude regimes at increased values of F (F,>3,6) are much better expressed than
in the nonlinear case,

The increase of the value of the decrement {3 substantially softend the sectmn of
the bifurcation characteristic described by an increase of the amplitudes of oscilla-
tion. This is illustrated in Fig. 13. It is seen that in this case the threshold value of the
amplitude F, and the area of stable stationary steady-state oscillations are much bet-
ter expresseci The case of a very high value of the parameter B shown in Fig, 13cis
described by a wide area of irregular oscillations and the steady-state stationary os-
cillations are realized at high values of the driving amplitude F (F;>37). In order to
get a2 more full idea, fig. 14 shows a bifurcation characteristic of the “linear” pendu-
lum, the control parameter is the decrement of damping B, and the value of the am-
plitude of the external driving force has been chosen to be high, F,=40. The areas of
stationary steady-state oscillations and irregular oscillations are clearly distin-
guished. At small values of the oscillations are of quasi-determinate nature, as op-
posed to the nonlinear case, where for the same values of [ the oscillations are of
clearly expressed irregular nature.

Now it is time to give a more detailed explanation and illustrate more evidently
the adaptive mechanism of mamtammg unchanging the pendulum oscillations,
which was mentioned several times in the above text. Fig. 15 shows conditionally a
period of the sinusoid of the external driving harmonic force at F =1,1 (Fig. 15a) and
F =28 (Fig. 15b). The time of interaction of the pendulum with thc external high-
frequency source is determined by the phase o, corresponding to the time when the
pendulum flies into the zone of driving [-4, d] and the phase ¢_, when it leaves the
zone. The pendulum is speeded up during the positive half pcnod and is stopped
during the negative half period. The resulting energy absorbed by the pendulum is
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Fig. 14, Bifurcation characteristic representing the de-
pendence of the amplitude of oscillations of a “linear”
pendulum on the value of the damping decrement # at
the following parameter values: x,=1,05, ¥,=0, F =48,
v=51, d=0,025, f=vary

Fig, 15. Illustration to the explanation of the adaptive
mechanism of selfcontrol of the input portion of energy
in the pendulum oscillations: one period of the external
harmonic force at F,=1,1 (a) and F,=2,8 (). The phase
¢ corresponds to the time when tﬂe pendulum enters
the driving zone and ¢ — to the time when it leaves
the zone '



proportional to the double hatched area marked with the sign @ in Fig, 15. In a re-
gime of stationary steady-state oscillations of the pendulum its amplitude remains
unchanged at a drastic change of the amplitude of the external driving force, €. g. at
a change of F_at almost 208% within the range [,1<F <28 (see Fig. 6}. The portion
of energy absorbed by the pendulum, delivered by the external source, remains un-
changed at an arbitrary value within this range, This is automatically achieved due to
the adaptive change and self-adjustment of the phase ¢, where the pendulum flies
into the driving zone [-d, d]. It is clearly seen from Fig. 154 that changing the ampli-
tude F, from 1,1 to 2,8 causes the phase ¢ to be changed in such a way that the dou-
ble hatched area with the sign @ remains unchanged {(compare Fig. 154 and Fig,
15b), tharefore the portion of energy input in the pendulum remains unchanged.

Consider the influence of the parameters v and 4 abeut which almost nothing
has been said so far. : ]

The analysis shows that the condition v>>1 should be satisfied in order to ob-
tain a discrete series of steady-state amplitudes of pendulum oscillation, i. e. the fre-
quency of the external driving force should be much higher than the natural reso-
nance frequency of the pendulum. For example, in the range of values 1 <v<10 and
the rest unchanging parameters, the pendulum may cnly have one steady-state am-
plitude of oscillation. At increased values of v a discrete series of possible steady-
state amplitudes is realized. As it was always seen, at v=>51 there exist 4 steady-state
stationary amplitudes of motion of the pendulum: ~0,25, ~0,75, ~1,1 and ~1,45 (see
Figs. 2 and 3). At further increase of the value of v, the number of the stationary am-
plitudes of motion of the pendulum is alsc increased. E. g., at v=97, the possible
discrete series of stationary amplitudes amounts tc 9 values: ~0,25, ~0,43, ~0,60,
~0,75, ~0,93, ~1,1, ~1,20, ~1,33, ~1,45, _

Since the function &(x} was chosen to be even function of the type (2), then v
should take on odd values. Regardless that at v>>1 this condition is considerably
softened, the numerical analysis shows a significant difference of the oscillation
modes, e. g. at v=51 and v=50, At the numerical and theoretical analysis it is possi-
ble that the preset v to be odd. At a natural system, built on the conditions of Fig. 1
and the Expr. (2} the condition v to be odd is automatically achieved, since due to
the adaptivity of the system and its non-isochronism (the frequency of pendulum os-

cillations depends on the amplitude of its oscillations) this condition corresponds to

the regime that is most favourable as related to energy input, Indeed, in order to en-
sure the stationary oscillation of the pendulum, the latter should enter the driving
zone [-d, d], both “from the left” and “from the right”, each time at the same phase
of the high-frequency driving force, differing from the preceding cycle with Ir, where
i=1, 3, 5, ... Obviously the stationary oscillations of the pendulum will be excited, if
the ratio of the external force frequency to the pendulum oscillation frequency is a
multiple tc an odd integer.

It should be particularly noted that only the precise odd integer ratio of fre-
quencies and zero deviation from the respective resonance frequency ensure sym-
metrical almost harmonic oscillations of the pendulum, When these conditions can-
not be simultaneously satisfied, nonsymmetrical regimes of oscillations of the pen-
dulum are realized. A clear example of such nonsymmetrical regime at v=351,0 is
amplitude — three oscillations of the pendulum around a value of ~0,25 (see Fig. 3).

The value v=51,0 gives the ratio between the external driving force frequency
and the natural freguency of the pendulum at disappearingly small amplitudes of
oscillation. At a finite amplitude (¢, g.~0,25) the ratio between the external driving force
frequency and the equivalent to that amplitude resonance frequency of the pendu-
lum (this ratio will be denoted by &) is greater than 51, i. e. N>51idue to the non-
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isochrenism of the oscillations, For example, the numerical experiment shows that
frequency ratios N=53, 55, 57, and 59 correspond to the stationary oscillations with
amplitudes ~0,25, ~0,75, ~1,1, and ~1,45 (see Fig. 3). Only at pendulum osgcillations
with amplitude ~1,45 there are conditions for osciilations with a precisely odd mul-
tiplicity of frequencies N=59. As seen from Figs. 2 and 3, in this case the pendulum
oscillations are “purest” and closest to the harmonic ones. In the remaining cases
there is some fluctuation of the resonance frequency around the precise multiple fre-
guency. At higher values of v it is possible the more complete fulfillment of the con-
ditions; ¥V to be an cdd integer, which provides symmetrical oscillations of the pen-
dulum. For example, at v=97 the 9 steady-state amplitudes listed above are realized,
to which 9 odd multiplicities of the frequencies correspond: from N=101 to N=117.

The numerical analysis of the influence of the parameter 4, defining the zone of
action of the external high-frequency harmonic force showed the following. There
cxist ranges of values for 4, in which the possible discrete series of steady-state am-
plitudes of oscillations of the pendulum and their values remain unchanged, These
ranges of values of d depend on the frequency of the external driving force. For ex-
ample, in the case of v=51, the main oscillation processes and regimes of the pendu-
lum remain unchanged in the range of values for d=[0,01, 0,045] and the rest un-
changing parameters. This is again possible due to the adaptivity of the system, when
the phase @, corresponding to the moment when the pendulum enters the zone of
action, is so changed that the portion of energy of the external source that is input
into the oscillating process should remain unchanged.

Conclusion

The paper presents the phenomenon of excitation of contin-
uous oscillations with a possible discrete set of stable amplitudes, The discussion is
performed on the basis of a model system representing a pendulum driven by an ex-
ternal harmonic force, which is nonlinear by the angle of its deviation. The inhomo-
geneous action of the external force is set by constraning the zone of its action on a
certain small part of the trajectory of motion.

The basic properties characterizing the mechanism of “quantized” oscillation
excitation are;

(1) Excitation of oscillations of the quasieigenfrequency of the system with a set
of discrete stationary amplitudes, depending only on the initial conditions: i. e., dis-
cretion of the energy absorption processes, a specific “quantization™ of the ampli-
tude or intensities of the excited oscillations.

(2) The possibility for an effective division of the frequency with high rate fre-
quency of the unary transformation. Principally new is the possibility to excite oscil-
lations of the eigenfrequency under the action of external high frequency force upon
the unperturbed linear and conservative linear and nonlinear oscillating systems.

(3) Adaptive self-control of the energy contribution in the cscillating process,
revealed as a maintenance of the amplitude values and the oscillations frequency in
the system in case of significant change of the amplitude of the external acticn, the
guality factor {O-factor, load, Josses), and other external actions, i, e, this is a phe-
nomenon of strong adaptive stabilization of regimes at a parameter change up to
hundreds per cent. This effect of “dynamic stabilization” can play an important role
in other, quite different physical phenomena such as quadrupoie mass filters and
various types of plasma confinement,

The simple pendulum is a very old device, yet it is a paradlgm of contemporary
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nonlinear dynamics. The equation of motion for the driven, damped pendulum mo-
dels a veriety of physical phenomena, e, g, such as radio-frequency driven Josephson
junctions and charge-density-wave transport, etc. This fact, supported by the re-
search of a great number of scientists for centuries, allows us to speak about the in-
exhaustibility of the pendulum as a basic paradigm of nonlinear dynamics and, on
the basis of our research on the general model of a pendulum to move to generaliza-
tion such as the class of kick-excited systems. The deterministic dynamical systems
of “pendulum type”, driven by external nonlinear to coordinates forces, exhibit large
families of irregular non-periodic solutions in addition to the expected and studied
harmonic and subharmonic motion. The physical significance of these and other ir-
regular motions which appear to occur in pendulum systems apparently is to be yet
more studied and discussed.
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Kuk-pp3byxznane Ha ,,KBAHTOBAHH" TPENTEHHS

Bradumup Tamezos, Apon Xoaden

(Peswome)

Ilpencrasen e yuCIIeH aHANNI HA ABJIEHHETO BH3OYXIaHe Ha
TPENTEHASA ¢ AMCKPETEH e YCTOHMHBYA aMIUIMTYAH 1104 Bh3NEHCTBHETO HE BBEIL-
Ha, HEIWHEHH2 N0 KOOPAWHATAT2 I¢PHCAHMYHA CHJla. UMCICHHAT eKCIEPAMEHT €
Hanpapen Ha OCHOBATA Ha YPABHEHME, ONIHCBAILO ABHXEHHETO Ha Maxaio, Janenn
Ca BDCMEBH CepUH, ChbBMECTEHH (a30BH NOPTPeTH, GnbyprannoRun XapaKTepuCTH-
Kkd. KaTo ynpasassalin napaMeTpy ca B3€TH AMIUINTYAATA Ha FEHILAATA BB3eHCT-
Balla CHIa K- KOSPANHEHTHT Ha AeMIdHpane B cucTeMaTa. JleTepMRHUpAHAT2 IpO-
ABA Ha HBJEHHETO Ce.XapakTePHInAPa C JBE BAXHH 3aKOHOMEPHOCTH; AUCKPETH3AIAN
(,,XBAHTOBOCT") Ha BEIMOKHUTE YCTOHUMBH aMIUTUTY/H M CHIHA 8AANTHBHA yCTOi-
YHBOCT NPY 3HAYATEC/IHH HIMCHEHHA HA aMILIHTY/ATa H3 BHHIIHOTO Bh3JIeHCTBEE,
Xa4eCTBeHAS (HaxTOp Ha TPENTAUIOTO 3BEHO H ADYIH BHHIIHA BIASHES, Jlazena e
Harjean2 ¢nsnuecka HHTEPIPETANKS HA CAMOAJANTHBENTE CEOACTEA, oDyciioBeHr
OT xapakTepeH $asoB NApaMeTsp Ha cHcremara. HeperyidapHOTO noBeienne Ha
CHCTEMATA C¢ X4PAKTEPU3NPA ChC CIIOKHA KOMIUISKCH2 AMHAMHKA: NepHon — 3, 7,
14 ocnunanun; TpenTenns, nonoSuyu Ha BpayHOROTO ABMXEHAE: P33IBUTH XaOTHUHY
TPENTERNS (ACTCPMHENCTAYSH X0C); HEPETYIIAPHH [BIKEHNAS, ONACBAHA ChC CTPa-
HCH, HO HE Xa0THYEH aTPakTop K ap, POpMUDAH U IPelIoKeH € KJaC CaMOaHall THB-
HH KHK-BR3OYANME CHCTEMH. '
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