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Identification of syslem, i.e. defermining their strue-
ture and parameters by observation, is one of the major problems of modern
theory and fechnique of automatic control. In order to determine the unknown
dynamic characteristics of a particular object or system, the relation belween
the input and output quantities must be represented in mathematical terms.
At present, no common classification of identification problems and methods
for their solution exists, The identification methods developed differ in types
of identiliable objects and tuned models, and, partly, in criteria of identifica-
tion quality, and, especially, in identification algorithms [1].

This work deals with a method for mathematical modélling of linear
condrol systems, intended lor linear dynamic object identification. This me-
thod also helps solve the problem of defining an oplimum model whose output
response approaches closely the output response of the identifiable object.

The method allows determination of the response of a dynamic object or
system to the input stimulus, using mathematical modelling on a microcompu-
ter systein [2]. The investigated signals are subjected to linecar filtering. The
results are estimated by a criterion of identification yuality. On the basis of
the optimum model parameters, a physical model of a linecar iracking system
as a scparate module of a microcomputer system is developed, using eleciro-
ntic components.

Let us consider a linear stationary tracking system with one input and one
output, the external stimulus being a random stationary process, independent
of the input signal [5]. The structural configuration of such a system with a
mode] of a human operator is shown in Fig. 1.

The mathematical modelling of the system in Fig, 1 is accomplished on
the basis of the observed quantities — input action r{#} and output signal

y(&y. Applying the model developed, the parameters of the models of the hu-
man operator (HO} and the controlled object are determined such thai the con-
dition of optimum fracking be fulfilled, namely the difference y(f) between
the output signal of the physical system y(f) and the oulput signal of its model

g} lends to zero at any moment ¢=0 of the system operation:
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Fig. I
(1) Yolt) =4O —y(t) 0.

The models of the human operator and the control object are described
by the transfer functions W,(p) and Wa(p), respectively. Wp(p) is the feed-
back transfer function. The input signal to the human operator model is the
error or mismatch e(?) between the input and output signal of the system:

2) e(l)=r{)—y(t) Wu(p).

The mathematical form accepted for representing the models of the human
operator and control object is a linear differential equation with constant
coefficients, since typical dynamic circuits are implemented in the physical
modelling of the tracking system in Fig. 1. In fact, even for a very narrow fre-
quericy range of the input action, the human response is not completely linear
and includes a linear part and residue or noise n(t). The reaction of the human
operator model is a sum of the signal e(t) at its input, transformed by the ope-
rator W, (p), and the noise n(f):

3) w(t)y=e() Wi(p)+n(i).
The output signal of the system model is defined as
) Y(O=1()W(p),

where W(p) is the equivalent transfer function of the whole system.

The output response of the system in Fig. I to an arbitrary input signal,
taken as a sequence of unit pulses with an amplitude r and duration d¢, can
be caleulated by Duhamel integral or convolution:

T
{5} y(t)={r(t)glt—1)dr,

6
where g(t—1) is a set of system responses to unit pulses with a weight coeffi-
cient r(z), starting at moment v and measured at moment (t—7) from the be-

ginning of the process. T is the period of the input signal r(7).
All variables, noise included, are subjected to Fourier transformation,
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The spectral noise component can have a magnitude, commensurate to the mag-
nitude of the linear reaction of the human operator model. Expression (3)
can be rewritlen in the form

(€) U(jo)=W(jo) E(joj+N(jo).

The basic procedure employed in the mathematical modelling is linear
filtering. The dynamic process of a given system is modelled by a set of filters
\Avith linear operators F; and weight coefficients r;(7). The outpul response
y{(t) of the model is determined as a sum of the output responses of the filters:

M J{O=ZIFisr(t),
where the symbol () denotes the linear operation F over r.

The class of linear filters is described with the convolution integral (3).
A discreet analog of the conveolution is the expression

(8 yl)=Zgli)rt), i=1,2,....n,

in which the pulse transition function g(#} can be replaced by the frequency
response of a linear {ilter F;. This follows from the properties of the Fourier
transformation.

The filters employed can be of differeni iypes. In order to obtain the best
correspondence between the output response of the physical system y(¢) and
the output response () (1) of the model with a small number of filters, the
pulse characteristics must be similar to those of the system investigated. This
match is estimated with the criterion of identification qualily:

9 J(e)=M{Fly{t) ]},

where F [,] is the loss function, and M {,} is a symbol of mathematical expec-
tation.

In the method considered, a quadratic loss function is employed, since
it leads to relatively simple linear estimation algorithms. So criterion (9)
fakes the form

(10) Je)=M{F[72 (), e}

The minimization of the quadratic criterion (10) is the condition lor op-
timim tracking and corresponds to minimization of the mean square mismatch
error
2‘1,'2

{11) £= 25‘9’(&)‘&(%)], =ty -5]L.
i—e

where L, indicates that the norm is in Euclidean space.

The criterion, thus defined, is afunciion of parameters ¢=={¢;. ¢s,. . -, €&}
of the separate units, i.e. s=f(c).

An optimum model of the system is obtained at a set of paramelers ¢ for
which {he mean square mismatch error y.(f) reaches a minimum value, i, e.

i 1L 2|1/2
[Zb‘(f:)“‘y(ﬁ)] | .

=0

(i2) min|{{e}|=min

Parameters ¢ are determined by equating to zero the partial derivative:
of the funclion f with respect to ¢ and fsolving the set of equations oblained
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Usually, the set of equations (12) is non-linear and is solved by the gradient
mcthods [4] or by modified Newton's method.

The first step of the method developed for mathematical modelling of 1i-
ficar systems involves determination of the structure of the investigated sys-
teim, i, e. the number of elementary units and the scheme of their connection,
Lven the most complicated system for automatic control can be described by
a combination of the three basic schemes of contiecting elementary units —
series, parallel and feedback.

Each unit in the program model of the linear systems is realized as |-
near digital filter with a transfer function Fyp). A syntactic description of the
system is accomplished, reflecling the connections befween the individual
units:

(14) W ipy=-S{F:(n)},

wliere § is an operator, representing a mathematical equivaieni of lhe system
syntactic description, and W (p) is the equivalent transfer function of the sys-
tem.

Using the described method for mathematical modelling, the identifica-
tion problem for a particular control system could be solved by one of the fol-
lowing approaches: &

1. Fully known syntactic description of the system -— number of elemen-
tary units, their kind and scheme of connection. The problem is reduced {o
determination of the parameters of cach elementary unit € ={Ci11 Coa, . . ., €55}
so that to meet the chosen criterion of identification quality f:

(18) f=infll gyl

2, Partially known syniactic description — number and connections of
elementary units known, but not their type. The problem is reduced to mul-
tiple solving of problem 1 within the framework of a certain set of elementary
units E{F;} for the allowable % combinations of the units belonging to that
set. The criterion of identification quality is
(18} F—min{fy, fo. ... ik

3. The syntactic description of the system is uaknown. The problem is
reduced to multiple solving of problem 2 for a certain set M of { possible con-
nection schemes, including units belonging to the set E{F;}. The criterion of
identification quality Is|

(17) H=min{F,, F ..., Fj.

When solving these problems, unstable solutions can arise, and this de-
mands a priori information for regularizing the solutions 3], Then condition
(8} is replaced by a new one of the kind

(18) e=[ly —gllc. 4] 21,

where & is a regularizing functional, reflecting the a priori information. De-
pending on the kind of Q, additional constraints on the vector solutions of the
parameters ¢ can be introduced, for example, by applying Chebishev’s crite-
rion or limiting the values of the parameters in reasonable limits,

The proposed method for mathematical modelling enables the investiga-
tion of arbitrary linear control systems in a wide Irequency range. A signifi-
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cant advanlage of this method is that simultaneously with the estimation of
the ideniification qualily by the criterion selected, the stability of the system
in the specific frequency range is checked, too. At the same time, the suggest-
ed method of mathematlical modelling makes possible the confinement of the
possible realizations within the tolerable values of the technical units and the
assessment of the parametric sensitivity to detuning of individual components.

This method is applicable in designing and investigating a wide class ol
complex technical sysiems under severe operating and economical limitations
and, in particular, systems, related to space rescarch,
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Merton 3a MaTeMaTHuUCCKO MOLENUpaHe
Ha RAHIEAIIH CHCTEeMH
3a aBTOMATHUNGC VIIpaBJCHHE

Tomac 3pases, [Hopa Kpewosa, Hotino [lemicos

{Peawwume)

C pazpaboTenHsi MeETON 33 MATEMAaTHUECKO MOJEJNHpaHe ce
pelianar 2afiayute 3a UACHTHOHKALNA Ha NMHPOK KAaC CHCTeMH 3a VIDABJRIHE.
Tozu MeTOR faBa BLIMOMHOCT BE3 OCHOBAZ HA OPOTPaMHO Peanud3upaH MareMatH-
Yern MOMEA Ha AWHeHHa AWiaMHUHa CHCTeMAa Ia ¢e ONpeieny peakuHsaTa i Ha BXOf-
HOTO Rhafe#icTaHe, O6patorKaTa Ha H3CNEARAITHTE CUTUIANM CE U3BDPIIBA HA UPHH-
UHUa #Ha fAuHekHATa QUATpallHsA B uectorHara objact. Bwvs ocHoBa "Ha n3bpau
KPUTePHH 38 KAUCCTBO Ha UACHTHOUKALUATA CC ONEHABa H3IXOH1IaTa DeaKIlns Ha
MONCIA 118 CHCTEMATA H UPEe3 UTCPATHREN afirOPHTHM CC ONPCACHAT ONTHMANHNHTE
TapaMerTpy Ha cucreMara. MeToNbT 34 MATEMATHYECKO MOJIEMpate I03RONABA Ja
CC QrpaluUuaT BHLAMOKHUTE PCANHIAUAN HA MORCNHTE B PAMKHTC i1a JOTIYCTHMEHTe
CTOHHOCTYH HA TEXHUYECKUTE 3BEHA K 4 ¢ ONeHsRA iIapaMeTPHUHATA YYBCTBUTEA-
HOCT 11a BCEKH MOLEN KbM PasCTPOHKA 118 OTASIIHTE KOMUIOHCHTH,





